Data Structures,
Digital Signatures and Identities

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

s Faculty of Technology

Bielefeld University
May 11, 2022

RECAP LECTURE 2

» Bitcoin and Blockchains: What are

» Preserving value

» Having a ledger

» Blocks of transactions
» Proof of Work

» Hash Function Basics:
» Definition
» Basic principles
» Hash Functions Properties:

» Collision Resistance
> Hiding
» Puzzle Friendliness

» The Merkle-Damgard Transform:

> SHA-256
» Compression Function
» Merkle-Damgard Transform

UNIVERSITAT
BIELEFELD

UNIVERSITAT
BIELEFELD

OVERVIEW

INTRODUCTION

» Data Structures:

» Hash pointers: pointers & hashing dereferenced values
» Blockchains: hash pointer linked lists
» Merkle Trees: hash pointer based binary trees
» Digital Signatures
» Digital signature schemes
» Generating keys, signing, verifying
» The unforgeability game
» Elliptic curve digital signature algorithm

» Identities

» Public keys
» Properties

» Simple Online Cash:

» Centralized Coin I
» Centralized Coin II: preventing double spending

UNIVERSITAT
BIELEFELD

UNIVERSITAT
BIELEFELD

HASH POINTERS

H(l)

(data)

Hash Pointer

From bitcoinbook.cs.princeton.edu

DEFINITION [HASH POINTER]: A hash pointer consists of

1. An address that points to a piece of data
2. A hash value of the data stored at that address

UNIVERSITAT
BIELEFELD

HASH POINTERS

H(l)

(data)

Hash Pointer

From bitcoinbook.cs.princeton.edu

Intuition
» The pointer indicates where the data can be found

» One can verify whether the data was modified:
» If not modified, hashing the data yields the stored hash value
» If modified, hashing the data disagrees with the stored value

UNIVERSITAT
BIELEFELD

BLock CHAIN
H(,)

prev: H(') prev: H(') prev: H(')

data data data

A block chain connects pieces of data using hash pointers

From bitcoinbook.cs.princeton.edu

DEFINITION [BLOCK CHAIN]: A block chain is

» a linked list where entries are referred to as blocks.

» Blocks are linked with hash pointers (instead of ordinary
pointers)
» The head is a hash pointer to the most recent (rightmost) block

UNIVERSITAT
BIELEFELD

TAMPER-EVIDENT LOG

1 ' 1
prev: H(!) J I‘B prev ()
Qo

Modifying data implies clashes in subsequent blocks

data data

From bitcoinbook.cs.princeton.edu

» Modifying block k leads to clash with hash in block k + 1
» Recall: This works because hash function is collision resistant

» The evil-doer continues, modifies the hash in block k 4 1
1 clash in block k 42 ...

UNIVERSITAT
BIELEFELD

TAMPER-EVIDENT LOG
H(|)

| i -
prev: H(l) J m M\
e

Modifying data implies clashes in subsequent blocks

data data

From bitcoinbook.cs.princeton.edu

» ... eventually the evil-doer will try to modify the head

» Conclusion: Storing head safely renders entire block chain
tamper-evident, up to first block
» Note: First block often referred to as genesis block.

UNIVERSITAT
BIELEFELD

MERKLE TREES
/

H() H()
P
¥ 17
H() H()) H() H()
HO) KO RO KO | TR RO HG) RO |
\ \ \ \
-] SRERS
Merkle Tree

From bitcoinbook.cs.princeton.edu

DEFINITION [MERKLE TREE]: A Merkle tree is
» a binary tree where nodes are linked with hash pointers
» Leaves refer to blocks containing data

» Internal nodes consist of two hash pointers, each of which points
unversiito one of the two children

MERKLE TREES

Hp W)
¥ ¥
HG) H() H() ()
HO) HQ) | HO) KO G KO [HG) R |
\ \ \ \
EE EEEHE EE
Merkle Tree

From bitcoinbook.cs.princeton.edu

» For accessing data in a Merkle tree, only storing the root (the
uppermost node) is required

» The root is referred to as Merkle root

» Ordering leaves introduces additional helpful structure
B vuessias Sorted Merkle tree

PROOF OF MEMBERSHIP

Task: Prove that a particular data block belongs to the Merkle tree

» Show the data block H(,) H()

» Show the blocks on the path from

the data block to the root H() H())
» For n nodes in the tree, only

O(log(n)) items to be shown H() H()
» It takes about log(n) time to verify
» Verification further requires only (@)
hash of root == modified data will

lead to clash eventually Path to particular block of data

From bitcoinbook.cs.princeton.edu

UNIVERSITAT
BIELEFELD

PROOF OF NON-MEMBERSHIP

Task: Prove that a data block does not belong to a sorted Merkle tree

» Reminder: In a sorted Merkle tree, leaves are ordered

» E.g. by alphabetical, lexicographical, numerical ordering
» Every order applies

» Proof: Show a path to

» the block just before the block in question
» the block just after the block in question

» Verification:

» Both blocks pointed out differ from the block in question
» Therefore, if the two blocks are consecutive in order,
non-membership of data block is verified

UNIVERSITAT
BIELEFELD

UNIVERSITAT
BIELEFELD

DIGITAL SIGNATURES

Basic Properties

1. Only you can make your signature
2. Anyone can verify it is your signature
3. The signature is tied to a specific document

» One cannot re-use the signature for other documents

UNIVERSITAT
BIELEFELD

DIGITAL SIGNATURE SCHEME 1

DEFINITION [DIGITAL SIGNATURE SCHEME]: A digital signature
scheme consists of the following three algorithms:

1. sk, pk = generateKeys(keysize) generates a secret key “sk” and a
public key “"pk” of size keysize
» sk is kept private and used to sign messages
» pkis published
» anyone with pk can verify signatures generated using sk

2. sig = sign(sk, message) signs a message using sk and generates
signature ‘sig’

3. isValid = verify(pk, message, sig) is true if sig is a signature for
message having been signed using "sk’ that is paired with "pk’

UNIVERSITAT
BIELEFELD

DIGITAL SIGNATURE SCHEME I1

Properties

» Valid signatures must verify. In other words,
verify(pk, message, sig) == True
if and only if
sig = sign(sk, message)

> generateKeys and sign can be randomized algorithms

» In fact, generateKeys should be randomized, because it should
generate different keys for different people

» ‘verify’ is always deterministic

» Signatures are existentially unforgeable

UNIVERSITAT
BIELEFELD

THE UNFORGEABILITY GAME

» The adversary, holding pk, claims that he can forge signatures
» The challenger, holding both sk and pk, tests this claim

» The adversary is able to make the challenger sign a reasonable
amount of documents of his choice

While 1 million documents may be reasonable,

2% documents is certainly unrealistic

Formally: number of documents polynomial w.r.t. keysize
Models real life conditions: an attacker may have means to
manipulate the one who signs

vvyvyy

» End of Game: The adversary generates signature ’sig’ for unseen
document M. If

verify(pk, M, sig) == True

the adversary wins. Otherwise, the challenger wins.

UNIVERSITAT
BIELEFELD

THE UNFORGEABILITY GAME

(sk, pk)
challenger /\ attacker

My

sign(sk, my)

m1

sign(sk, m,)

M, sig
verify(pk, M, sig)

if true, attacker wins

The Unforgeability Game.

From bitcoinbook.cs.princeton.edu

» The challenger holds (sk,pk), the attacker (adversary) only pk

» The attacker receives signatures for messages mo, my, ..., m, and
eventually generates a signature for M ¢ {mo, ..., m, }

B VeI verify (pk, M, sig) == True, the attacker wins

UNFORGEABILITY

DEFINITION [UNFORGEABILITY]: For someone who

» knows the public key "pk’
» knows
sig; = sign(sk, m;)
for a reasonable amount of messages m;,i =0, ..., n,
» but does not know ’sk’,

the chances to generate a valid signature for M ¢ {my, ..., m; } in
the name of (sk,pk) are so small that it never happens in
practice

UNIVERSITAT
BIELEFELD

BITCOIN DIGITAL SIGNATURE ALGORITHM

ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

ECDSA: Facts
» The ECDSA implements the digital signature scheme in Bitcoin
» ECDSA is a US government standard
» Update of earlier DSA to implement elliptic curves
» Bitcoin uses ECDSA over standard elliptic curve “secp256k1”

» Provides 128 bits of security; as difficult to break as
performing 2!?% hash function calls

» Much more common: using elliptic curve ”“secp256r1” ==
using ”secp256k1” is particularity of Bitcoin

UNIVERSITAT
BIELEFELD

BITCOIN DIGITAL SIGNATURE ALGORITHM

ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

ECDSA: Characteristics
» Private key: 256 bits
» Public key, uncompressed: 512 bits
» Public key, compressed: 257 bits
» Message to be signed: 256 bits
» Signature: 512 bits

ECDSA: Practical Issue
» ECDSA can only sign messages of length 256 bits

» Solution: Hash messages, and sign the resulting message digests

UNIVERSITAT
BIELEFELD

DIGITAL SIGNATURES: RANDOMNESS

» Reminder: 'generateKeys’ relies on randomized algorithm
> ’sign’ itself may rely on randomized algorithms as well

» Bad source of randomness when calling ‘generateKeys’can leak
secret key
= when making signatures using badly randomized keys,
revealing public key can leak private (secret) key

» Once private key is leaked, adversaries can forge signatures

UNIVERSITAT
BIELEFELD

UNIVERSITAT
BIELEFELD

IDENTITIES: PUBLIC KEYS

Motivation
» Digital signatures: Public keys 'pk’ reflect virtual identities
» 'pk’: “the one” who signs a message

» Anyone holding the matching secret key "sk’ can speak for "pk’

Consequences
» One can create new identities whenever one wants
1= just call ‘generateKeys’ to create another one
» Practice: Publish hash of ‘pk’ as identity
» Verifying identities of messages:

» Check that ‘pk’ hashes to published string
> Verify message using 'pk’

» Identities look entirely random = “anonymous face in the crowd”

UNIVERSITAT
BIELEFELD

IDENTITIES: FINAL REMARKS

>

>

>

Real identities representing "pk’ cannot be uncovered by
examining "pk’.
However, one can study statements made by "pk’

1= Statements may reveal real world identity

Remedy: Create new identities, and continue to work with them
(still issues remaining... to be dealt with later)

Public key identities support decentralization:

» Nobody stores identities
» Anyone can destroy and create identities at free will

Identities are often (and somewhat misleadingly) referred to as
addresses

Good randomness prevents duplicating identities in practice

UNIVERSITAT

BIELEFELD

UNIVERSITAT
BIELEFELD

ONLINE CASH: SIMPLE COIN I

Rules

1. One designated identity ("Goofy”) can create coins

>

>
>
>

Each coin has unique coin ID: UniqueCoinID

“Goofy” constructs string “CreateCoin [UniqueCoinID]
"Goofy” signs string using his secret key

Anyone can verify that the new coin was created by “Goofy”

2. Anyone owning a coin can tranfer it to anyone else

UNIVERSITAT
BIELEFELD

v

>
>
>
>

>

Transfers are strings “Pay [Coin] to [Alice]”

[Coin] is a hash pointer referencing the coin

[Alice] is a public key

The one who transfers the coin signs the pay string

Anyone can verify ownership by following hash pointers until
coin creation

Verify as well that all prior owners signed transactions

SIMPLE COIN I

signed by sk

Alice

Pay to pkg,, : H(l)

v

signed by sk

Goofy

Pay to pk,. : H(l)

sighed by skGoofy

CreateCoin [uniqueCoinID]

Chain of transactions, including creation (bottom) and two times spending a
coin

" From https://bitcoinbook.cs.princeton.edu
UNIVERSITAT
BIELEFELD

SIMPLE COIN I: SECURITY ISSUE

Double Spending

» Alice transfers coin to Bob
» Alice transfers same coin also to Chuck

» When verifying both transactions, both appear to be valid

» Following hash pointers approve of existence of coin and Alice’s
ownership

» Both Bob and Chuck point out that Alice commits to transfer by
her signature

UNIVERSITAT
BIELEFELD

ONLINE CASH: SIMPLE COIN II

Preventing Double Spending

» The designated identity (“Scrooge”) publishes all transactions as
blocks of a block chain

» ”Scrooge” signs each transaction (one block of the chain)

» Transactions can be either of type

» “CreateCoins” to create new coins
» “PayCoins” to transfer coins between identities
» ”Scrooge” is the only one to create coins

» We also make transactions more flexible

» create fractions of coins
» break coins into smaller parts in transfers

UNIVERSITAT
BIELEFELD

SIMPLE COIN II: CREATING COINS

transID: 73

type:CreateCoins

coins created

le——— coinlD 73(0)

le—— coinlD 73(1)

num value recipient
0 3.2 0x...
1 1.4 0x...
2 71 Ox...

le——— coinlD 73(2)

Transaction that creates coins

From https://bitcoinbook.cs.princeton.edu

» Coins can have different values

» Coins are assigned to owners

» ”Scrooge” signs the transaction

UNIVERSITAT
BIELEFELD

SIMPLE COIN II: TRANSFERRING COINS

transiD: 73 type:PayCoins

consumed coinlDs:

68(1), 42(0), 72(3) » Consumes (destroys)
s e coins; creates new ones of
num value recipient Ssame tOtal Value
° 32 B » Lists ID’s of all coins
! L2 B consumed
2 74l Oxs
; » Owners involved sign
signatures

transaction

Transaction that transfers coins

From https://bitcoinbook.cs.princeton.edu

UNIVERSITAT
BIELEFELD

SIMPLE COIN II: BLOCK CHAIN

| | L H(p)

prev: H() prev: H(T) prev: H(T)
transID: 71 transID: 72 transID: 73
trans trans trans

Blockchain supporting simple coin example

From https://bitcoinbook.cs.princeton.edu

Blocks signed by designated identity ”Scrooge”

Actions in transaction signed by coin owner or creator

vyYyy

Everyone can verify validity of transactions

v

Linearity: double spending attempts immediately evident

UNIVERSITAT
BIELEFELD

SIMPLE COIN II: DRAWBACK

Issue: Central Authority
”Scrooge” cannot fake transactions. However:
» ”Scrooge” creates coins

» ”Scrooge” could create many coins, implying loss of value of coins
» ”Scrooge” can be selective in distributing coins
» “Scrooge” can keep many coins for himself

» “Scrooge” appends blocks to block chain

» ”Scrooge” can deny service to particular identities
» ”Scrooge” can force identities to pay transaction fees

UNIVERSITAT
BIELEFELD

MATERIALS / OUTLOOK

» See Bitcoin and Cryptocurrency Technologies, 1.2 — 1.5

» See https://bitcoinbook.cs.princeton.edu/ for
further resources

» Next lecture: “Decentralization”

» See Bitcoin and Cryptocurrency Technologies 2.1 — 2.5

UNIVERSITAT
BIELEFELD

https://bitcoinbook.cs.princeton.edu/

