
Data Structures,
Digital Signatures and Identities

Alexander Schönhuth

Bielefeld University
May 11, 2022



RECAP LECTURE 2

▶ Bitcoin and Blockchains: What are
▶ Preserving value
▶ Having a ledger
▶ Blocks of transactions
▶ Proof of Work

▶ Hash Function Basics:
▶ Definition
▶ Basic principles

▶ Hash Functions Properties:
▶ Collision Resistance
▶ Hiding
▶ Puzzle Friendliness

▶ The Merkle-Damgard Transform:
▶ SHA-256
▶ Compression Function
▶ Merkle-Damgard Transform



Hash Pointers
Blockchains
Merkle Trees

Digital
Signatures

Identities:
Public Keys

Simple
Online Cash



OVERVIEW
INTRODUCTION

▶ Data Structures:
▶ Hash pointers: pointers & hashing dereferenced values
▶ Blockchains: hash pointer linked lists
▶ Merkle Trees: hash pointer based binary trees

▶ Digital Signatures
▶ Digital signature schemes
▶ Generating keys, signing, verifying
▶ The unforgeability game
▶ Elliptic curve digital signature algorithm

▶ Identities
▶ Public keys
▶ Properties

▶ Simple Online Cash:
▶ Centralized Coin I
▶ Centralized Coin II: preventing double spending



Hash Pointers
Blockchains
Merkle Trees

Digital
Signatures

Identities:
Public Keys

Simple
Online Cash



HASH POINTERS

Hash Pointer
From bitcoinbook.cs.princeton.edu

DEFINITION [HASH POINTER]: A hash pointer consists of

1. An address that points to a piece of data

2. A hash value of the data stored at that address



HASH POINTERS

Hash Pointer
From bitcoinbook.cs.princeton.edu

Intuition

▶ The pointer indicates where the data can be found

▶ One can verify whether the data was modified:
▶ If not modified, hashing the data yields the stored hash value
▶ If modified, hashing the data disagrees with the stored value



BLOCK CHAIN

A block chain connects pieces of data using hash pointers
From bitcoinbook.cs.princeton.edu

DEFINITION [BLOCK CHAIN]: A block chain is

▶ a linked list where entries are referred to as blocks.

▶ Blocks are linked with hash pointers (instead of ordinary
pointers)

▶ The head is a hash pointer to the most recent (rightmost) block



TAMPER-EVIDENT LOG

Modifying data implies clashes in subsequent blocks

From bitcoinbook.cs.princeton.edu

▶ Modifying block k leads to clash with hash in block k + 1

▶ Recall: This works because hash function is collision resistant

▶ The evil-doer continues, modifies the hash in block k + 1
☞ clash in block k + 2 ...



TAMPER-EVIDENT LOG

Modifying data implies clashes in subsequent blocks
From bitcoinbook.cs.princeton.edu

▶ ... eventually the evil-doer will try to modify the head

▶ Conclusion: Storing head safely renders entire block chain
tamper-evident, up to first block

▶ Note: First block often referred to as genesis block.



MERKLE TREES

Merkle Tree
From bitcoinbook.cs.princeton.edu

DEFINITION [MERKLE TREE]: A Merkle tree is

▶ a binary tree where nodes are linked with hash pointers

▶ Leaves refer to blocks containing data

▶ Internal nodes consist of two hash pointers, each of which points
to one of the two children



MERKLE TREES

Merkle Tree
From bitcoinbook.cs.princeton.edu

▶ For accessing data in a Merkle tree, only storing the root (the
uppermost node) is required

▶ The root is referred to as Merkle root

▶ Ordering leaves introduces additional helpful structure
☞ Sorted Merkle tree



PROOF OF MEMBERSHIP

Task: Prove that a particular data block belongs to the Merkle tree

▶ Show the data block

▶ Show the blocks on the path from
the data block to the root

▶ For n nodes in the tree, only
O(log(n)) items to be shown

▶ It takes about log(n) time to verify

▶ Verification further requires only
hash of root ☞ modified data will
lead to clash eventually

Path to particular block of data
From bitcoinbook.cs.princeton.edu



PROOF OF NON-MEMBERSHIP

Task: Prove that a data block does not belong to a sorted Merkle tree

▶ Reminder: In a sorted Merkle tree, leaves are ordered
▶ E.g. by alphabetical, lexicographical, numerical ordering
▶ Every order applies

▶ Proof: Show a path to
▶ the block just before the block in question
▶ the block just after the block in question

▶ Verification:
▶ Both blocks pointed out differ from the block in question
▶ Therefore, if the two blocks are consecutive in order,

non-membership of data block is verified



Hash Pointers
Blockchains
Merkle Trees

Digital
Signatures

Identities:
Public Keys

Simple
Online Cash



DIGITAL SIGNATURES

Basic Properties

1. Only you can make your signature

2. Anyone can verify it is your signature

3. The signature is tied to a specific document

▶ One cannot re-use the signature for other documents



DIGITAL SIGNATURE SCHEME I

DEFINITION [DIGITAL SIGNATURE SCHEME]: A digital signature
scheme consists of the following three algorithms:

1. sk,pk = generateKeys(keysize) generates a secret key ”sk” and a
public key ”pk” of size keysize

▶ sk is kept private and used to sign messages
▶ pk is published
▶ anyone with pk can verify signatures generated using sk

2. sig = sign(sk,message) signs a message using sk and generates
signature ’sig’

3. isValid = verify(pk,message, sig) is true if sig is a signature for
message having been signed using ’sk’ that is paired with ’pk’



DIGITAL SIGNATURE SCHEME II

Properties

▶ Valid signatures must verify. In other words,

verify(pk,message, sig) == True

if and only if
sig = sign(sk,message)

▶ generateKeys and sign can be randomized algorithms
▶ In fact, generateKeys should be randomized, because it should

generate different keys for different people

▶ ’verify’ is always deterministic

▶ Signatures are existentially unforgeable



THE UNFORGEABILITY GAME

▶ The adversary, holding pk, claims that he can forge signatures

▶ The challenger, holding both sk and pk, tests this claim

▶ The adversary is able to make the challenger sign a reasonable
amount of documents of his choice

▶ While 1 million documents may be reasonable,
▶ 280 documents is certainly unrealistic
▶ Formally: number of documents polynomial w.r.t. keysize
▶ Models real life conditions: an attacker may have means to

manipulate the one who signs

▶ End of Game: The adversary generates signature ’sig’ for unseen
document M. If

verify(pk,M, sig) == True

the adversary wins. Otherwise, the challenger wins.



THE UNFORGEABILITY GAME

The Unforgeability Game.
From bitcoinbook.cs.princeton.edu

▶ The challenger holds (sk,pk), the attacker (adversary) only pk
▶ The attacker receives signatures for messages m0,m1, ...,mn and

eventually generates a signature for M ̸∈ {m0, ...,mn}
▶ If verify(pk,M, sig) == True, the attacker wins



UNFORGEABILITY

DEFINITION [UNFORGEABILITY]: For someone who
▶ knows the public key ’pk’
▶ knows

sigi = sign(sk,mi)

for a reasonable amount of messages mi, i = 0, ...,n,
▶ but does not know ’sk’,

the chances to generate a valid signature for M ̸∈ {m0, ...,mn} in
the name of (sk,pk) are so small that it never happens in
practice



BITCOIN DIGITAL SIGNATURE ALGORITHM
ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

ECDSA: Facts

▶ The ECDSA implements the digital signature scheme in Bitcoin

▶ ECDSA is a US government standard

▶ Update of earlier DSA to implement elliptic curves

▶ Bitcoin uses ECDSA over standard elliptic curve ”secp256k1”

▶ Provides 128 bits of security; as difficult to break as
performing 2128 hash function calls

▶ Much more common: using elliptic curve ”secp256r1” ☞
using ”secp256k1” is particularity of Bitcoin



BITCOIN DIGITAL SIGNATURE ALGORITHM
ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

ECDSA: Characteristics

▶ Private key: 256 bits

▶ Public key, uncompressed: 512 bits

▶ Public key, compressed: 257 bits

▶ Message to be signed: 256 bits

▶ Signature: 512 bits

ECDSA: Practical Issue

▶ ECDSA can only sign messages of length 256 bits

▶ Solution: Hash messages, and sign the resulting message digests



DIGITAL SIGNATURES: RANDOMNESS

▶ Reminder: ’generateKeys’ relies on randomized algorithm

▶ ’sign’ itself may rely on randomized algorithms as well

▶ Bad source of randomness when calling ’generateKeys’can leak
secret key
☞ when making signatures using badly randomized keys,
revealing public key can leak private (secret) key

▶ Once private key is leaked, adversaries can forge signatures



Hash Pointers
Blockchains
Merkle Trees

Digital
Signatures

Identities:
Public Keys

Simple
Online Cash



IDENTITIES: PUBLIC KEYS

Motivation
▶ Digital signatures: Public keys ’pk’ reflect virtual identities
▶ ’pk’: ”the one” who signs a message
▶ Anyone holding the matching secret key ’sk’ can speak for ’pk’

Consequences

▶ One can create new identities whenever one wants
☞ just call ’generateKeys’ to create another one

▶ Practice: Publish hash of ’pk’ as identity

▶ Verifying identities of messages:
▶ Check that ’pk’ hashes to published string
▶ Verify message using ’pk’

▶ Identities look entirely random ☞ ”anonymous face in the crowd”



IDENTITIES: FINAL REMARKS

▶ Real identities representing ’pk’ cannot be uncovered by
examining ’pk’.

▶ However, one can study statements made by ’pk’
☞ Statements may reveal real world identity

▶ Remedy: Create new identities, and continue to work with them
(still issues remaining... to be dealt with later)

▶ Public key identities support decentralization:
▶ Nobody stores identities
▶ Anyone can destroy and create identities at free will

▶ Identities are often (and somewhat misleadingly) referred to as
addresses

▶ Good randomness prevents duplicating identities in practice



Hash Pointers
Blockchains
Merkle Trees

Digital
Signatures

Identities:
Public Keys

Simple
Online Cash



ONLINE CASH: SIMPLE COIN I

Rules

1. One designated identity (”Goofy”) can create coins
▶ Each coin has unique coin ID: UniqueCoinID
▶ ”Goofy” constructs string ”CreateCoin [UniqueCoinID]
▶ ”Goofy” signs string using his secret key
▶ Anyone can verify that the new coin was created by ”Goofy”

2. Anyone owning a coin can tranfer it to anyone else
▶ Transfers are strings ”Pay [Coin] to [Alice]”
▶ [Coin] is a hash pointer referencing the coin
▶ [Alice] is a public key
▶ The one who transfers the coin signs the pay string
▶ Anyone can verify ownership by following hash pointers until

coin creation
▶ Verify as well that all prior owners signed transactions



SIMPLE COIN I

Chain of transactions, including creation (bottom) and two times spending a
coin

From https://bitcoinbook.cs.princeton.edu



SIMPLE COIN I: SECURITY ISSUE

Double Spending

▶ Alice transfers coin to Bob

▶ Alice transfers same coin also to Chuck

▶ When verifying both transactions, both appear to be valid
▶ Following hash pointers approve of existence of coin and Alice’s

ownership
▶ Both Bob and Chuck point out that Alice commits to transfer by

her signature



ONLINE CASH: SIMPLE COIN II

Preventing Double Spending

▶ The designated identity (”Scrooge”) publishes all transactions as
blocks of a block chain

▶ ”Scrooge” signs each transaction (one block of the chain)

▶ Transactions can be either of type
▶ ”CreateCoins” to create new coins
▶ ”PayCoins” to transfer coins between identities
▶ ”Scrooge” is the only one to create coins

▶ We also make transactions more flexible
▶ create fractions of coins
▶ break coins into smaller parts in transfers



SIMPLE COIN II: CREATING COINS

Transaction that creates coins
From https://bitcoinbook.cs.princeton.edu

▶ Coins can have different values

▶ Coins are assigned to owners

▶ ”Scrooge” signs the transaction



SIMPLE COIN II: TRANSFERRING COINS

Transaction that transfers coins
From https://bitcoinbook.cs.princeton.edu

▶ Consumes (destroys)
coins; creates new ones of
same total value

▶ Lists ID’s of all coins
consumed

▶ Owners involved sign
transaction



SIMPLE COIN II: BLOCK CHAIN

Blockchain supporting simple coin example
From https://bitcoinbook.cs.princeton.edu

▶ Blocks signed by designated identity ”Scrooge”
▶ Actions in transaction signed by coin owner or creator
▶ Everyone can verify validity of transactions
▶ Linearity: double spending attempts immediately evident



SIMPLE COIN II: DRAWBACK

Issue: Central Authority
”Scrooge” cannot fake transactions. However:

▶ ”Scrooge” creates coins
▶ ”Scrooge” could create many coins, implying loss of value of coins
▶ ”Scrooge” can be selective in distributing coins
▶ ”Scrooge” can keep many coins for himself

▶ ”Scrooge” appends blocks to block chain
▶ ”Scrooge” can deny service to particular identities
▶ ”Scrooge” can force identities to pay transaction fees



MATERIALS / OUTLOOK

▶ See Bitcoin and Cryptocurrency Technologies, 1.2 – 1.5

▶ See https://bitcoinbook.cs.princeton.edu/ for
further resources

▶ Next lecture: “Decentralization”

▶ See Bitcoin and Cryptocurrency Technologies 2.1 – 2.5

https://bitcoinbook.cs.princeton.edu/

