
Bitcoin & Blockchains, Cryptography I

Alexander Schönhuth

Bielefeld University
May 4, 2022

Bitcoin
&
Blockchains

Hash Functions
–
Introduction

Hash Functions
–
Central
Properties

The Merkle-
Damgard
Transform

Bitcoin
&
Blockchains

Hash Functions
–
Introduction

Hash Functions
–
Central
Properties

The Merkle-
Damgard
Transform

Bitcoin: Things to Consider

ELECTRONIC CASH: PRESERVING VALUE

Issue
▶ Question: How to preserve the value of the cash?
▶ Generation of new electronic cash necessary for particular

purposes

Solution – Mining
▶ Adopt idea that renders gold or diamonds valuable

☞ make electronic cash sparse
▶ New cash relates to computational puzzles

▶ Solving puzzles = ”mining”
▶ Requires time / electricity
▶ Requires computational hardware resources

ELECTRONIC CASH: LEDGER

Issue
▶ How to keep track of transactions?
▶ Requires ledger (= account book) to be accessed by anyone

having permissions
▶ Data structure that supports such ledger?

Solution: Blockchain
▶ Enable timestamping to establish order of transactions
▶ Preserve integrity of earlier transactions, so fraud

impossible ☞ make use of electronic signatures

The Bitcoin Blockchain

HASHING

▶ DEFINITION: A hash function maps data of arbitrary size to
fixed-size output values, called hash (values)

▶ A hash function should

▶ be (very) fast to compute
▶ minimize collisions, i.e. cases where two different inputs

get mapped to identical hashes

BLOCKCHAIN: LEDGER FOR ELECTRONIC CASH

Linked Lists of Documents
From https://bitcoinbook.cs.princeton.edu

▶ Documents contain
▶ Transactions, like ”Alice transfers 10 coins to Bob”
▶ (Hash) pointer to previous document
▶ Timestamp
▶ Electronic signature

▶ Preserves integrity of earlier transactions, so fraud impossible

BLOCKS OF DOCUMENTS

Blocks of Transaction Documents
From https://bitcoinbook.cs.princeton.edu

▶ Documents from various users are collected into blocks,
receiving the same timestamp (separated by dotted lines)

▶ Blocks are structured using hash pointers (arrows)
▶ Enables linking large, mixed blocks of transactions

THE BITCOIN BLOCKCHAIN

▶ Nodes = bitcoin users/owners
▶ Every node maintains copy of the

entire blockchain
▶ ☞ every node ”is the bank”
▶ So, every node can verify every

transaction
☞ ”distributed verification”

▶ Approving / rejecting transactions:
distributed timestamping
mechanism

From Kuo et al., 2018

BITCOIN - A SIMPLIFIED BLOCKCHAIN EXAMPLE

From Kuo et al., 2018

Each block in the bitcoin blockchain contains (among others):

▶ Transactions
▶ The hash of the previous block (here 256 bits): if a transaction in block

B1 is changed → the hash value stored in B2 does no longer match the
hash of B1

Deterministic order of blocks

▶ Each block serves as a timestamp of the enclosed transactions
▶ Prevents double spending thanks to linear (chain like) structure

BLOCK CREATION I

▶ Issue: We need to determine someone (i.e. one node) to generate
a new block

▶ Optimally, that ”someone” should be picked randomly

▶ However, running random number generation across entire
network impossible / insecure

▶ Solution: Principle of ”Proof of Work”

BLOCK CREATION II

Proof of Work

▶ Nonce: Additional data, added to and hashed with the block

▶ Proof of work: Determine nonce such that hashing nonce + block
yields hash value below certain threshold

▶ Mining: Each node composes a block of transactions and
searches for a nonce

▶ The block of the first node that determines such a suitable nonce
is selected as the next block

▶ Once the block is verified, the successful miner receives a new
coin as reward

BLOCK CREATION: PROOF OF WORK

From Kuo et al., 2018

▶ The winning node adds his/her block to the chain

▶ The new block is broadcast to the whole network

▶ Each node verifies the block; if successful
▶ Block is added to chain
▶ Creator receives ”mining” reward

BLOCK CREATION: PROOF OF WORK

From Kuo et al., 2018

Important:

▶ Creating blocks (mining) is difficult

▶ Verifying is easy

Bitcoin
&
Blockchains

Hash Functions
–
Introduction

Hash Functions
–
Central
Properties

The Merkle-
Damgard
Transform

INTRODUCTION

Traditional Currencies: Control
▶ Central banks control money supply
▶ Physical currencies have anti-counterfeiting features
▶ Law enforcement stops people from breaking rules

Decentralized Online Currencies: Evildoing

▶ Prevent malicious users from taking over
▶ Prevent individual users from counterfeiting / double spending
▶ Prevent loss of value

Cryptographic principles can warrant this
...

with great probability

CRYPTOGRAPHIC TECHNIQUES

▶ Hash Functions
▶ Hash Pointers and Data Structures
▶ Digital Signatures
▶ Public Keys as Identities

CRYTOGRAPHIC HASH FUNCTIONS

▶ Collision Resistance and Message Digests

▶ Hiding and Commitments

▶ Puzzle Friendliness and Search Puzzles

▶ SHA-256 and Merkle-Damgard Transform

HASH FUNCTIONS

▶ A hash function takes a hash-key x as input and maps it to a
bucket number.

▶ The bucket number is a an integer in the range from 0 to B − 1,
where B is the number of buckets. Often B is a prime.

▶ Here in the following, B = 2256, reflecting having numbers coded
as 256-bit strings

▶ Simple Example: Hash-keys are positive integers.

h(x) ≡ x mod B (1)

which is the remainder of x when dividing it by B. Often, B is a
prime.

▶ If B = 2256, that is h(x) ≡ x mod 2256, hashing amounts to
keeping the last 256 bits of arbitrarily sized input.

HASH FUNCTIONS

▶ If hash-keys are not integers, they are often converted to
integers.

▶ Example: if hash-keys are strings, one can map each character to
its ASCII code, and sum them up, before dividing them by B.

▶ If hash-keys have several components (such as arrays), convert
each component to integer, and sum them up.

▶ Let h(x) ≡ x mod 5. Example:

h(”AB”) = h(ord(′A′) + ord(′B′)) = h(65 + 66) = h(131) = 1

CRYPTOGRAPHIC HASH FUNCTIONS

General Properties Assumed Here

▶ Input: string of arbitrary size

▶ Output: Fixed size, commonly 256 bits

▶ All hash functions are efficiently computable

Key Properties

▶ Collision-resistance

▶ Hiding

▶ Puzzle-Friendliness

Blockchains
–
Motivation

Hash Functions
–
Introduction

Hash Functions
–
Central
Properties

The Merkle-
Damgard
Transform

Collistion Resistance

COLLISION RESISTANCE: INTRODUCTION

General Purpose

▶ Input space: too large, so difficult to grasp computationally
▶ Output space: small and sufficiently structured to serve as a

computational foundation
▶ Drawback: Unavoidably, two different inputs can be mapped to the

same output ☞ Collision!
▶ Example: For a 256-bit hash function, 2256 + 1 different inputs guarantee

a potential collision

Hash function: output space is smaller than input space
From https://bitcoinbook.cs.princeton.edu

COLLISION RESISTANCE: DEFINITION

A hash function H is said to be collision resistant, if it is
computationally infeasible to find

x ̸= y such that H(x) = H(y)

Hash collision. Different x and y are hashed to same value
From https://bitcoinbook.cs.princeton.edu

COLLISION RESISTANCE: COMPUTATIONAL

INFEASIBILITY

▶ If hash function is sufficiently random, finding collisions
amounts to trying inputs – and there are too many

▶ If not well defined, however, finding collisions can bea easy

▶ For example: H(x) ≡ x mod 2256, returning the last 256 bits of the
input, is not collision resistant

▶ Birthday paradox: For an output space of size 2256, already 2130

random inputs yield a collision with probability 99.8%.

▶ God thank that computing 2128 hash values takes 227 years

Good hash function design is key

COLLISION RESISTANCE: SUMMARY

▶ In the following, we assume that our hash functions are
collision resistant

▶ Still, this means that collisions are theoretically possible
▶ So, what is the real life effect of this assumption?
▶ Answer: No collisions have been found so far for the hash

functions in use here

APPLICATION: MESSAGE DIGESTS

▶ When working with a collision resistant hash function H, one
can assume that H(x) ̸= H(y) for x ̸= y

Message Digest

▶ Problem: Alice uploads a huge file.

▶ She would like to ensure the identity of the file when
downloading it later

▶ Keeping a copy for comparing it is no option

▶ Solution: Hash the file using a collision resistant hash function

▶ Before uploading it
▶ After downloading it

If the two hashes agree, files are identical!

Hiding

HIDING

DEFINITION [HIDING PROPERTY – FIRST TRY]:
A hash function H has the hiding property if, when given y = H(x),
there is no feasible way to determine x.

Issue – Thought Experiment

▶ Flip a coin and hash the outcome, ”heads” or ”tails”

▶ An adversary can determine the input by hashing both ”heads”
and ”tails” and comparing with the hashed outcome

▶ ☞ It is easy to determine the input

▶ Issue: Certain input values are particularly likely to show

▶ Idea: ”Spread out” input.

▶ What does that mean? How can we do that?

HIDING

DEFINTION [MIN-ENTROPY]:
A probability distribution P has high min-entropy if no particular
value r has high probability P(r) to show.
EXAMPLE: A distribution over a domain with many values, that
assigns equal probability to each element of the domain has high
min-entropy. For example, the probability distribution that assigns to
each 256-bit string r equal probability (= 1/2256) has high
min-entropy.

HIDING

Concatenation of Strings:

▶ Let s||t denote the concatenation of strings s and t

▶ Example: For s = ”ab” and t = ”yz”, we have s||t = ”abyz”

Enforcing the Hiding Property: Idea

▶ Let x the input that you want to hide

▶ Select a probability distribution with high min-entropy

▶ Pick a random r according to this distribution

▶ Consider H(r||x), that is, hash the concatenation of r and x

HIDING

Enforcing the Hiding Property: Idea

▶ Pick a random r from high min-entropy distribution

▶ Compute H(r||x), that is, hash the concatenation of r and x

DEFINITION [HIDING PROPERTY – BETTER TRY]:
A hash function H is hiding if

▶ for r drawn from a high min-entropy distribution

▶ it is infeasible to determine any input x from H(r||x).

COMMITMENTS

DEFINITION [COMMITMENT]:
A commitment is the digital analog of taking a value (or message),
sealing it in an envelope.

▶ The value/message is yours, that is, you committed to the
contents of the envelope

▶ The value/message remains a secret from everyone else

▶ You can open the envelope and reveal the value/message to
everyone, any suitable moment

▶ Once open, others can verify that you commit to the
value/message in the envelope

COMMITMENT SCHEME I

Committing

▶ Generate a random ”nonce” (= ”number used only once”) from
a distribution of high min-entropy

▶ Hash the concatenation of nonce with the message msg, to which
you commit, with a hash function H, representing the commit
function

▶ Publish the commitment, i.e. the hash

com = H(nonce||msg)

▶ com is the envelope; everyone can see com

COMMITMENT SCHEME II

Opening the Envelope / Verification

▶ Publish the nonce and the message msg

▶ Everybody can check whether

com = H(nonce||msg)

If yes, you genuinely committed to the message

COMMITMENT SCHEME

From https://bitcoinbook.cs.princeton.edu

▶ Hiding: hash function commit has the hiding property

▶ Binding: hash function commit is collision resistant

Puzzle-Friendliness

PUZZLE-FRIENDLINESS: DEFINITION

DEFINITION [PUZZLE-FRIENDLINESS]:

Let H be a hash function, and

▶ k be drawn from a high min-entropy distribution

▶ Y be a set of output values, defined by

▶ n bits being predetermined
▶ the remaining bits being arbitrary

Then H is puzzle-friendly if it is infeasible to find x such that

H(k||x) ∈ Y

in significantly less than 2n trials.

PUZZLE-FRIENDLINESS: EXPLANATION

Example:

▶ Let k be from high min-entropy distribution

▶ Let H have a 256-bit output

▶ Let
Y := {x1...x256 | x1 = ... = xn = 0}

be all bit strings of length 256 whose first n positions are zero

H is puzzle-friendly, if one needs 2n trials for finding x such
H(k||x) ∈ Y.

PUZZLE-FRIENDLINESS: EXPLANATION

Intuition: Let

▶ S be the set of output values overall
▶ Y ⊂ S a particular subset of output values
▶ r be sufficiently random

The smaller Y, the longer it takes to find x such that H(r||x) ∈ Y.

Puzzle-Friendliness versus Hiding: Let

▶ S consist of sufficiently many elements, e.g. all 256-bit strings
▶ H be puzzle-friendly

Then H is also hiding.

Proof: Hiding translates into considering Y = {y}. Puzzle-friendliness implies
requiring (about) 2256 trials for finding x such H(k||x) = y, which means
hiding.

APPLICATION: SEARCH PUZZLE

▶ If H has n-bit output (e.g. n = 256), H can take any of 2n different values
▶ The smaller Y, the harder the puzzle
▶ Puzzle id is sufficiently random
▶ For puzzle-friendly H, finding x requires maximum amount of time

possible
▶ Puzzle-friendly hash functions give rise to hard search puzzles

Blockchains
–
Motivation

Hash Functions
–
Introduction

Hash Functions
–
Central
Properties

The Merkle-
Damgard
Transform

SHA - SECURE HASH ALGORITHM

Bitcoin and SHA-256
▶ Bitcoin uses the SHA-256 as the central hash function
▶ SHA-256 was invented in 2001 by the NSA

▶ The SHA-256 has all properties required:
▶ It is collision-resistant; so far, no collision observed
▶ It has the hiding property
▶ It is puzzle-friendly

SHA-256: Technical Properties

▶ The SHA-256 can take inputs of arbitrary length and generates 256-bit
output

▶ It builds on a compression function that takes fixed-length input, and
▶ the Merkle-Damgard transform, which enables input of arbitrary length

for fixed-length input functions

SHA-256: COMPRESSION FUNCTION

From Jeong & Kim, 2014

Take-Home-Message: It’s complicated and works

MERKLE-DAMGARD TRANSFORM I

Merkle-Damgard: Iterated application of compression function c
From bitcoinbook.cs.princeton.edu

▶ The Merkle-Damgard transform turns a hash function of
fixed-length input into one of arbitrary-length input

▶ It preserves collision resistance: if compression function is
collision resistant, so is Merkle-Damgard transform

MERKLE-DAMGARD TRANSFORM II

From bitcoinbook.cs.princeton.edu

▶ The compression function takes inputs of fixed length m and
produces an output of length n, where n < m

▶ Divide the input of arbitrary length into blocks of length m − n

▶ Here, m = 768,n = 256, so m − n = 512

MERKLE-DAMGARD TRANSFORM III

From bitcoinbook.cs.princeton.edu

▶ Pass each block together with the output of the previous
block into the compression function.

▶ Input length = m − n + n = m, which is the fixed length of
the input of the compression function.

MERKLE-DAMGARD TRANSFORM IV

From bitcoinbook.cs.princeton.edu

▶ For the 1st block, we use an Initialization Vector (IV) as
input, because there is no previous block output.

▶ The IV is reused for every call to the hash function.
▶ The output of the last block is the output that is returned

PADDING I

Issue
▶ Observation: The Merkle-Damgard Transform takes input

of length n × 512, where n is arbitrary
▶ Arbitrary-length input does not necessarily match this

requirement
▶ When breaking the input into fixed sized blocks, the last

block may be too small
▶ Padding addresses to get the last block to the right size

PADDING II

Solution
▶ Add a ”1” followed by as many ”0”s as necessary to the

last block
▶ Also add a 64- or 128-bit integer that specifies the length of

the entire message
☞ This prevents length extension attacks

▶ The length of the block and the length (64 or 128) of the
integer determine the number of ”0”s

▶ Once padded, the input suits the Merkle-Damgard
transform

MATERIALS / OUTLOOK

▶ See Bitcoin and Cryptocurrency Technologies, 1.1

▶ See https://bitcoinbook.cs.princeton.edu/ for
further resources

▶ Further: T. Kuo, H.Kim and L. Ohno-Machado (2017): Blockchain
ditributed ledger technologies for biomedical and health care
applications

▶ Next lecture: “Cryptography II”

▶ See Bitcoin and Cryptocurrency Technologies 1.2–1.4

https://bitcoinbook.cs.princeton.edu/

