Bitcoin \& Blockchains, Cryptography I

Alexander Schönhuth

Bielefeld University
May 4, 2022

Hash Functions
-
Central
Properties

Hash Functions
 -
 Introduction

The MerkleDamgard Transform

Bitcoin

\&
Blockchains

Hash Functions

Introduction -

The Merkle-
Damgard
Transform

Bitcoin: Things to Consider

Electronic Cash: Preserving Value

Issue

- Question: How to preserve the value of the cash?
- Generation of new electronic cash necessary for particular purposes

Solution - Mining

- Adopt idea that renders gold or diamonds valuable make electronic cash sparse
- New cash relates to computational puzzles
- Solving puzzles = "mining"
- Requires time / electricity
- Requires computational hardware resources

Electronic Cash: Ledger

Issue

- How to keep track of transactions?
- Requires ledger (= account book) to be accessed by anyone having permissions
- Data structure that supports such ledger?

Solution: Blockchain

- Enable timestamping to establish order of transactions
- Preserve integrity of earlier transactions, so fraud impossible make use of electronic signatures

The Bitcoin Blockchain

HASHING

- Definition: A hash function maps data of arbitrary size to fixed-size output values, called hash (values)
- A hash function should
- be (very) fast to compute
- minimize collisions, i.e. cases where two different inputs get mapped to identical hashes

Hashing Algorithm

Hashing Algorithm

Blockchain: Ledger for Electronic Cash

Linked Lists of Documents
From https://bitcoinbook.cs.princeton.edu

- Documents contain
- Transactions, like "Alice transfers 10 coins to Bob"
- (Hash) pointer to previous document
- Timestamp
- Electronic signature
- Preserves integrity of earlier transactions, so fraud impossible

Blocks of Documents

Blocks of Transaction Documents
From https://bitcoinbook.cs.princeton.edu

- Documents from various users are collected into blocks, receiving the same timestamp (separated by dotted lines)
- Blocks are structured using hash pointers (arrows)
- Enables linking large, mixed blocks of transactions

The Bitcoin Blockchain

- Nodes = bitcoin users/owners
- Every node maintains copy of the entire blockchain
- every node "is the bank"
- So, every node can verify every transaction "distributed verification"
- Approving / rejecting transactions: distributed timestamping mechanism

From Kuo et al., 2018

Bitcoin - A simplified blockchain example

From Kuo et al., 2018

Each block in the bitcoin blockchain contains (among others):

- Transactions
- The hash of the previous block (here 256 bits): if a transaction in block B1 is changed \rightarrow the hash value stored in B2 does no longer match the hash of B1

Deterministic order of blocks

- Each block serves as a timestamp of the enclosed transactions
- Prevents double spending thanks to linear (chain like) structure

Block Creation I

- Issue: We need to determine someone (i.e. one node) to generate a new block
- Optimally, that "someone" should be picked randomly
- However, running random number generation across entire network impossible / insecure
- Solution: Principle of "Proof of Work"

Block Creation II

Proof of Work

- Nonce: Additional data, added to and hashed with the block
- Proof of work: Determine nonce such that hashing nonce + block yields hash value below certain threshold
- Mining: Each node composes a block of transactions and searches for a nonce
- The block of the first node that determines such a suitable nonce is selected as the next block
- Once the block is verified, the successful miner receives a new coin as reward

Block creation: Proof of work

From Kuo et al., 2018

- The winning node adds his/her block to the chain
- The new block is broadcast to the whole network
- Each node verifies the block; if successful
- Block is added to chain
- Creator receives "mining" reward

Block creation: Proof of work

From Kuo et al., 2018

Important:

- Creating blocks (mining) is difficult
- Verifying is easy

InTRODUCTION

Traditional Currencies: Control

- Central banks control money supply
- Physical currencies have anti-counterfeiting features
- Law enforcement stops people from breaking rules

Decentralized Online Currencies: Evildoing

- Prevent malicious users from taking over
- Prevent individual users from counterfeiting / double spending
- Prevent loss of value

Cryptographic principles can warrant this

with great probability

Cryptographic Techniques

- Hash Functions
- Hash Pointers and Data Structures
- Digital Signatures
- Public Keys as Identities

Crytographic Hash Functions

- Collision Resistance and Message Digests
- Hiding and Commitments
- Puzzle Friendliness and Search Puzzles
- SHA-256 and Merkle-Damgard Transform

Hash Functions

- A hash function takes a hash-key x as input and maps it to a bucket number.
- The bucket number is a an integer in the range from 0 to $B-1$, where B is the number of buckets. Often B is a prime.
- Here in the following, $B=2^{256}$, reflecting having numbers coded as 256 -bit strings
- Simple Example: Hash-keys are positive integers.

$$
\begin{equation*}
h(x) \equiv x \quad \bmod B \tag{1}
\end{equation*}
$$

which is the remainder of x when dividing it by B. Often, B is a prime.

- If $B=2^{256}$, that is $h(x) \equiv x \bmod 2^{256}$, hashing amounts to keeping the last 256 bits of arbitrarily sized input.

Hash Functions

- If hash-keys are not integers, they are often converted to integers.
- Example: if hash-keys are strings, one can map each character to its ASCII code, and sum them up, before dividing them by B.
- If hash-keys have several components (such as arrays), convert each component to integer, and sum them up.
- Let $h(x) \equiv x \bmod 5$. Example:

$$
h\left(" A B^{\prime \prime}\right)=h\left(\operatorname{ord}\left({ }^{\prime} A^{\prime}\right)+\operatorname{ord}\left(\left(^{\prime} B^{\prime}\right)\right)=h(65+66)=h(131)=1\right.
$$

CRyPTOGRAPHIC HASH FUNCTIONS

General Properties Assumed Here

- Input: string of arbitrary size
- Output: Fixed size, commonly 256 bits
- All hash functions are efficiently computable

Key Properties

- Collision-resistance
- Hiding
- Puzzle-Friendliness

Hash Functions

Introduction

Hash Functions

Central
 Properties

The MerkleDamgard Transform

Collistion Resistance

COLLISION RESISTANCE: INTRODUCTION

General Purpose

- Input space: too large, so difficult to grasp computationally
- Output space: small and sufficiently structured to serve as a computational foundation
- Drawback: Unavoidably, two different inputs can be mapped to the same output Collision!
- Example: For a 256 -bit hash function, $2^{256}+1$ different inputs guarantee a potential collision

Hash function: output space is smaller than input space

Collision Resistance: Definition

A hash function H is said to be collision resistant, if it is computationally infeasible to find

Hash collision. Different x and y are hashed to same value From https://bitcoinbook.cs.princeton.edu

Collision Resistance: Computational Infeasibility

- If hash function is sufficiently random, finding collisions amounts to trying inputs - and there are too many
- If not well defined, however, finding collisions can bea easy
- For example: $H(x) \equiv x \bmod 2^{256}$, returning the last 256 bits of the input, is not collision resistant
- Birthday paradox: For an output space of size 2^{256}, already 2^{130} random inputs yield a collision with probability 99.8%.
- God thank that computing 2^{128} hash values takes 2^{27} years

Good hash function design is key

Collision Resistance: Summary

- In the following, we assume that our hash functions are collision resistant
- Still, this means that collisions are theoretically possible
- So, what is the real life effect of this assumption?
- Answer: No collisions have been found so far for the hash functions in use here

Application: MEssage Digests

- When working with a collision resistant hash function H, one can assume that $H(x) \neq H(y)$ for $x \neq y$

Message Digest

- Problem: Alice uploads a huge file.
- She would like to ensure the identity of the file when downloading it later
- Keeping a copy for comparing it is no option
- Solution: Hash the file using a collision resistant hash function
- Before uploading it
- After downloading it

If the two hashes agree, files are identical!

Hiding

Hiding

Definition [Hiding Property - First Try]:
A hash function H has the hiding property if, when given $y=H(x)$, there is no feasible way to determine x.

Issue - Thought Experiment

- Flip a coin and hash the outcome, "heads" or "tails"
- An adversary can determine the input by hashing both "heads" and "tails" and comparing with the hashed outcome
- It is easy to determine the input
- Issue: Certain input values are particularly likely to show
- Idea: "Spread out" input.
- What does that mean? How can we do that?

Hiding

Defintion [Min-Entropy]:
A probability distribution P has high min-entropy if no particular value r has high probability $P(r)$ to show.
EXAMPLE: A distribution over a domain with many values, that assigns equal probability to each element of the domain has high min-entropy. For example, the probability distribution that assigns to each 256 -bit string r equal probability $\left(=1 / 2^{256}\right)$ has high min-entropy.

Hiding

Concatenation of Strings:

- Let $s \| t$ denote the concatenation of strings s and t
- Example: For $s=" a b "$ and $t=" y z "$, we have $s \| t=" a b y z "$

Enforcing the Hiding Property: Idea

- Let x the input that you want to hide
- Select a probability distribution with high min-entropy
- Pick a random r according to this distribution
- Consider $H(r \| x)$, that is, hash the concatenation of r and x

Hiding

Enforcing the Hiding Property: Idea

- Pick a random r from high min-entropy distribution
- Compute $H(r|\mid x)$, that is, hash the concatenation of r and x

Definition [Hiding Property - Better Try]:
A hash function H is hiding if

- for r drawn from a high min-entropy distribution
- it is infeasible to determine any input x from $H(r \| x)$.

COMMITMENTS

Definition [Commitment]:
A commitment is the digital analog of taking a value (or message), sealing it in an envelope.

- The value/message is yours, that is, you committed to the contents of the envelope
- The value/message remains a secret from everyone else
- You can open the envelope and reveal the value/message to everyone, any suitable moment
- Once open, others can verify that you commit to the value/message in the envelope

Commitment Scheme I

Committing

- Generate a random "nonce" (= "number used only once") from a distribution of high min-entropy
- Hash the concatenation of nonce with the message msg, to which you commit, with a hash function H, representing the commit function
- Publish the commitment, i.e. the hash

$$
c o m=H(\text { nonce } \| m s g)
$$

- com is the envelope; everyone can see com

Commitment Scheme II

Opening the Envelope / Verification

- Publish the nonce and the message $m s g$
- Everybody can check whether

$$
\operatorname{com}=H(\text { nonce } \| m s g)
$$

If yes, you genuinely committed to the message

Commitment Scheme

Commitment scheme. A commitment scheme consists of two algorithms:

- com := commit(msg, nonce) The commit function takes a message and secret random value, called a nonce, as input and returns a commitment.
- verify(com, msg, nonce) The verify function takes a commitment, nonce, and message as input. It returns true if com == commit(msg , nonce) and false otherwise.

We require that the following two security properties hold:

- Hiding: Given com, it is infeasible to find $m s g$
- Binding: It is infeasible to find two pairs (msg, nonce) and (msg', nonce ${ }^{\prime}$) such that $m s g \neq$ $m s g^{\prime}$ and commit($m s g$, nonce) $==\operatorname{commit}\left(m s g^{\prime}\right.$, nonce')
- Hiding: hash function commit has the hiding property
- Binding: hash function commit is collision resistant

Puzzle-Friendliness

PuZZLE-Friendliness: DEFINITION

Definition [Puzzle-Friendliness]:
Let H be a hash function, and

- k be drawn from a high min-entropy distribution
- Y be a set of output values, defined by
- n bits being predetermined
- the remaining bits being arbitrary

Then H is puzzle-friendly if it is infeasible to find x such that

$$
H(k \| x) \in Y
$$

in significantly less than 2^{n} trials.

PuzzLe-Friendliness: Explanation

Example:

- Let k be from high min-entropy distribution
- Let H have a 256 -bit output
- Let

$$
Y:=\left\{x_{1} \ldots x_{256} \mid x_{1}=\ldots=x_{n}=0\right\}
$$

be all bit strings of length 256 whose first n positions are zero
H is puzzle-friendly, if one needs 2^{n} trials for finding x such $H(k \| x) \in Y$.

PuZZLE-FRIENDLINESS: EXPLANATION

Intuition: Let

- S be the set of output values overall
- $Y \subset S$ a particular subset of output values
- r be sufficiently random

The smaller Y, the longer it takes to find x such that $H(r \| x) \in Y$.
Puzzle-Friendliness versus Hiding: Let

- S consist of sufficiently many elements, e.g. all 256-bit strings
- H be puzzle-friendly

Then H is also hiding.
Proof: Hiding translates into considering $Y=\{y\}$. Puzzle-friendliness implies requiring (about) 2^{256} trials for finding x such $H(k \| x)=y$, which means hiding.

Application: Search PuZZle

Search puzzle. A search puzzle consists of

- a hash function, H,
- a value, id (which we call the puzzle-ID), chosen from a high min-entropy distribution
- and a target set Y

A solution to this puzzle is a value, x, such that

$$
\mathrm{H}(i d \| x) \in Y
$$

- If H has n-bit output (e.g. $n=256$), H can take any of 2^{n} different values
- The smaller Y, the harder the puzzle
- Puzzle id is sufficiently random
- For puzzle-friendly H, finding x requires maximum amount of time possible
- Puzzle-friendly hash functions give rise to hard search puzzles

Hash Functions

Introduction

Hash Functions
 Central
 Properties

The Merkle-
Damgard
Transform

SHA - Secure Hash Algorithm

Bitcoin and SHA-256

- Bitcoin uses the SHA-256 as the central hash function
- SHA-256 was invented in 2001 by the NSA
- The SHA-256 has all properties required:
- It is collision-resistant; so far, no collision observed
- It has the hiding property
- It is puzzle-friendly

SHA-256: Technical Properties

- The SHA-256 can take inputs of arbitrary length and generates 256-bit output
- It builds on a compression function that takes fixed-length input, and
- the Merkle-Damgard transform, which enables input of arbitrary length for fixed-length input functions

SHA-256: COMPRESSION FUNCTION

From Jeong \& Kim, 2014
Take-Home-Message: It's complicated and works

Merkle-Damgard Transform I

Merkle-Damgard: Iterated application of compression function \mathcal{C}
From bitcoinbook.cs.princeton.edu

- The Merkle-Damgard transform turns a hash function of fixed-length input into one of arbitrary-length input
- It preserves collision resistance: if compression function is collision resistant, so is Merkle-Damgard transform

Merkle-Damgard Transform II

Frombitcoinbook.cs.princeton.edu

- The compression function takes inputs of fixed length m and produces an output of length n, where $n<m$
- Divide the input of arbitrary length into blocks of length $m-n$
- Here, $m=768, n=256$, so $m-n=512$

Merkle-Damgard Transform III

From bitcoinbook.cs.princeton.edu

- Pass each block together with the output of the previous block into the compression function.
- Input length $=m-n+n=m$, which is the fixed length of the input of the compression function.

Merkle-Damgard Transform IV

From bitcoinbook.cs.princeton.edu

- For the 1st block, we use an Initialization Vector (IV) as input, because there is no previous block output.
- The IV is reused for every call to the hash function.
- The output of the last block is the output that is returned

Padding I

Issue

- Observation: The Merkle-Damgard Transform takes input of length $n \times 512$, where n is arbitrary
- Arbitrary-length input does not necessarily match this requirement
- When breaking the input into fixed sized blocks, the last block may be too small
- Padding addresses to get the last block to the right size

Padding II

Solution

- Add a " 1 " followed by as many " 0 "s as necessary to the last block
- Also add a 64- or 128-bit integer that specifies the length of the entire message This prevents length extension attacks
- The length of the block and the length (64 or 128) of the integer determine the number of " 0 "s
- Once padded, the input suits the Merkle-Damgard transform

Materials / Outlook

- See Bitcoin and Cryptocurrency Technologies, 1.1
- See https://bitcoinbook.cs.princeton.edu/for further resources
- Further: T. Kuo, H.Kim and L. Ohno-Machado (2017): Blockchain ditributed ledger technologies for biomedical and health care applications
- Next lecture: "Cryptography II"
- See Bitcoin and Cryptocurrency Technologies 1.2-1.4

