Link Analysis II - Frequent Itemsets I

Alexander Schönhuth

Bielefeld University
June 9, 2022

TODAY

Overview

- Link Analysis II
- Link Spam and TrustRank: Fight Advanced Spammer Strategies
- Hubs and Authorities: Alternative, Non-PageRank Approach
- Frequent Itemsets I
- The Market-Basket Model
- Frequent Itemsets: Definition and Applications
- Association Rules
- The A-Priori Algorithm

Learning Goals: Understand these topics and get familiarized

Link Spam

Link Spam: Introduction

- Google rendered term spam ineffective
- Spammers developed link spam as a technique to artificially increase PageRank
- In the following, understand how to
- create link spam
- and how to fight it

Spammer View of Web

Types of pages

- Inaccessible pages: cannot be accessed by spammer; majority of pages
- Accessible pages: not owned, but can be accessed (manipulated)

Blogs, newspapers, forums allow leaving comments with links

- Own pages: owned and fully controlled by spammer

Spam farm

- Part of own pages with
- target page t, for which maximum PageRank is to be achieved
- supporting pages m, with links from and to t
- Note that without links from outside, spam farm would be useless

Spammer View of Web

Spammer view: types of pages and spam farm Adopted from mmds.org

Spam Farm: Analysis

- Let there be n web pages overall
- Let $\beta \in[0.8,0.9]$ be the taxed fraction of PageRank
- Let there be a spam farm with target page t and m supporting pages
- Let $\operatorname{In}(t)$ be all pages with a link to $t ; \operatorname{PR}(p)$ be the PageRank for a page p; Out (p) be all successors of $p \in P$
- Let

$$
x=\beta \sum_{p \in \operatorname{In}(t)} \frac{\operatorname{PR}(p)}{|\operatorname{Out}(p)|}
$$

be the PageRank provided to t by accessible pages

- Let $y=\operatorname{PR}(t)$ be the unknown PageRank of t
- The PageRank of each supporting page is

$$
\beta \frac{y}{m}+\frac{(1-\beta)}{n}
$$

where $\beta \frac{y}{m}$ is due to t and $\frac{(1-\beta)}{n}$ is due to random teleporting

Spam Farm: Analysis

- Let $y=\operatorname{PR}(t)$ be the unknown PageRank of t
- Let x be the PageRank provided to t by accessible pages
- Let $\beta \frac{y}{m}+\frac{(1-\beta)}{n}$ be the PageRank of each supporting page

Solving for y

1. We compute

$$
\begin{equation*}
y=x+\beta m\left(\frac{\beta y}{m}+\frac{1-\beta}{n}\right)=x+\beta^{2} y+\beta(1-\beta) \frac{m}{n} \tag{1}
\end{equation*}
$$

2. This yields

$$
\begin{equation*}
y=\frac{x}{1-\beta^{2}}+c \frac{m}{n} \tag{2}
\end{equation*}
$$

where $c=\beta(1-\beta) /\left(1-\beta^{2}\right)=\beta /(1+\beta)$
Example: $\beta=0.85$, so $1 /\left(1-\beta^{2}\right)=3.6$ and $c=0.46$; spam farm has amplified external contribution to t by 360%; t also obtains 46% of the fraction m / n

Combating Link Spam

War on spam farms

- Search engines identify spam farm structures and eliminate pages from their index
- Spammers create alternative structures that raise PageRank of target pages
- Search engines in turn eliminate those structures, too
- Endless war between search engines and spammers

Systematic approaches

- TrustRank: Variation on topic-sensitive PageRank to lower score of spam pages
- Spam mass: Calculation that identifies pages likely to be spam Eliminate such pages or lower their PageRank substantially

TRUSTRANK

- TrustRank is like topic-sensitive PageRank where the "topic" are pages believed to be "trustworthy"
- Inaccessible pages belong to the topic
- Accessible pages like blogs or newspapers are only borderline trustworthy
- Choosing trustworthy pages:

1. Human picked pages, or pages of highest PageRank (not achievable by link spam)
2. Pick pages trustworthy by domain, such as .edu, .ac.uk, .gov and so on

Spam Mass

Definition [Spam Mass]

- For a page p, let $r(p)$ and $t(p)$ be its PageRank and its TrustRank
- The spam mass of p is defined to be

$$
\frac{(r(p)-t(p))}{r(p)}
$$

EXPLANATION

- Negative or small spam mass indicates that p is not spam
- Spam mass close to 1 indicates that p is likely to be spam

Spam Mass: Example

Example web graph; B and D are trusted pages
Adopted from mmds.org

Node	PageRank	TrustRank	Spam Mass
A	$3 / 9$	$54 / 210$	0.229
B	$2 / 9$	$59 / 210$	-0.264
C	$2 / 9$	$38 / 210$	0.186
D	$2 / 9$	$59 / 210$	-0.264

Corresponding page rank, trust rank and spam mass

Hubs and Authorities

Hubs and Authorities: Introduction

- The hubs-and-authorities algorithm, also called HITS (hyperlink-induced topic search), is an alternative to PageRank
- Similarities:
- Quantifies importance of pages
- Involved fixedpoint computation by iterative matrix-vector multiplication
- Differences:
- Divides pages into hubs and authorities
- Not a preprocessing step: ranks importance of responses to query

HITS: INTUITION

- Importance is twofold
- Authorities are pages deemed to be valuable because they provide information on a topic
- E.g. course website at university
- Hubs are pages deemed to be valuable because of providing directions about topics
- E.g. department directory providing links to all course websites
- Mutually recursive definition:
- Good hub links to good authorities
- Good authority is linked to by good hubs

Hubbiness and Authority: Definition

Definition [Hubbiness, Authority]

- Let the number of webpages be n
- Let $\mathbf{h} \in \mathbb{R}^{n}, \mathbf{a} \in \mathbb{R}^{n}$ be two vectors where
- \mathbf{h}_{i} quantifies the goodness of page i as a hub
- \mathbf{a}_{i} quantifies the goodness of page i as an authority
- \mathbf{h}_{i} is also referred to as hubbiness of page i

Remark

- Values of \mathbf{h}, \mathbf{a} are generally scaled such that
- either the largest component is 1
- or the sum of components is 1
- In the following, first option will be used here

Link Matrix: Definition

Definition [Link Matrix]

- Let the number of webpages be n
- The link matrix $L \in\{0,1\}^{n \times n}$ of the Web is defined by

$$
L_{i j}= \begin{cases}1 & \text { there is a link from page } i \text { to page } j \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

- Its transpose L^{T} is defined by $L_{i j}^{T}=L_{j i}$, that $L_{i j}^{T}=1$ if there is a link from the j-th to the i-th page, and zero otherwise

Remark

- L^{T} is similar to the PageRank web matrix M insofar as

$$
L_{i j}^{T} \neq 0 \quad \text { if and only if } \quad M_{i j} \neq 0
$$

Link Matrix: Example

Example web graph
Adopted from mmds.org

$$
L=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad L^{\mathrm{T}}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Corresponding link matrix and its transpose

Hubs and Authorities: Formal Relationship

- Good hub links to good authorities:

$$
\begin{equation*}
\mathbf{h}_{i}=\lambda \sum_{j=1}^{n} L_{i j} \mathbf{a}_{j} \quad \text { or, equivalently } \quad \mathbf{h}=\lambda L \mathbf{a} \tag{4}
\end{equation*}
$$

where λ represents the necessary scaling of \mathbf{h}

- Good authority is linked to by good hubs:

$$
\begin{equation*}
\mathbf{a}_{i}=\mu \sum_{j=1}^{n} L_{i j}^{T} \mathbf{h}_{j} \quad \text { or, equivalently } \quad \mathbf{a}=\mu L^{T} \mathbf{h} \tag{5}
\end{equation*}
$$

where μ represents the necessary scaling of \mathbf{a}.

Hubs and Authorities: Formal Relationship

- Substituting (5) into (4) yields:

$$
\begin{equation*}
\mathbf{h}=\lambda \mu L L^{T} \mathbf{h} \tag{6}
\end{equation*}
$$

- Substituting (4) into (5) yields:

$$
\begin{equation*}
\mathbf{a}=\mu \lambda L^{T} L \mathbf{a} \tag{7}
\end{equation*}
$$

- \mathbf{h}, \mathbf{a} can be determined by solving linear equations
- However: $L L^{T}, L^{T} L$ are not sufficiently sparse for their size to allow for solving corresponding linear equations
- Solution: HITS algorithm

The HITS Algorithm

Initialization: Set $\mathbf{h}_{i}=1$ for all i, that is $\mathbf{h}=(1, \ldots, 1)$
Iteration:

1. Compute

$$
\mathbf{a}=L^{T} \mathbf{h}
$$

2. Scale such that largest component of \mathbf{a} is 1
3. Compute

$$
\mathbf{h}=L \mathbf{a}
$$

4. Scale such that largest component of \mathbf{h} is 1
5. Repeat until convergence

HITS AlGorithm: Example

$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

$L^{\mathrm{T}} \mathbf{h}$
$\left[\begin{array}{c}3 / 10 \\ 1 \\ 1 \\ 9 / 10 \\ 1 / 10\end{array}\right]$
a

a

La

La
h

First two iterations of HITS algorithm
Adopted from mms.org

HITS AlGORITHM: ExAMPLE

A and D are good hubs, B and C are good authorities
Adopted from mmds.org

$$
\mathbf{h}=\left[\begin{array}{c}
1 \\
0.3583 \\
0 \\
0.7165 \\
0
\end{array}\right] \quad \mathbf{a}=\left[\begin{array}{c}
0.2087 \\
1 \\
1 \\
0.7913 \\
0
\end{array}\right]
$$

Limits of \mathbf{h}, \mathbf{a} on graph

Frequent Itemsets Introduction

Frequent Itemsets: Overview

Foundations

- There are items available in the market
- There are baskets, sets of items having been purchased together
- A frequent itemset is a set of items that is found to commonly appear in many baskets
- The frequent-itemset problem is to identify frequent itemsets

MARKET-BASKET MODEL

Market-basket model

- The market-basket model is a many-many-relationship
- One basket holds many items
- One item appears in several baskets
- Each basket is an itemset, i.e. a set of (one or several) items
- Usually, the number of items in a basket is small compared to number of items overall
- Number of baskets is usually large; too large to fit in main memory
- Data usually is a sequence of baskets

Frequent Itemsets: Definition

Definition [FRequent Itemset]:

- Let $s>0$ be a support threshold
- Let I be a set of items
- $\operatorname{supp}(I)$, the support of I, is the number of baskets in which I appears as a subset

An itemset I is referred to as frequent if

$$
\begin{equation*}
\operatorname{supp}(I) \geq s \tag{8}
\end{equation*}
$$

that is, if the support of I is at least the support threshold

Frequent Itemsets: Example

Baskets

1. \{and, dog, bites $\}$
2. \{news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring\}
3. \{cat, killer, likely, is, a, big, dog\}
4. \{professional, free, advice, on, dog, training, puppy, training\}
5. \{cat, and, kitten, training, behavior\}
6. \{dog, cat, provides, training, in, Oregon $\}$
7. \{dog, and, cat, is, a, slang, term, used, by, police, officers, for, a, male-female, relationship $\}$
8. \{shop, for, your, show, dog, grooming, and, pet, supplies\}

- E.g. $\operatorname{supp}(\{\operatorname{dog}\})=7, \operatorname{supp}(\{$ and $\})=5, \operatorname{supp}(\{\operatorname{dog}$, and $\})=4$
- Let the support threshold $s=3$
- 5 frequent singletons: $\{\operatorname{dog}\},\{\mathrm{cat}\},\{\mathrm{a}\},\{\mathrm{and}\},\{$ training $\}$
- 5 frequent doubletons: $\{\mathrm{dog}, \mathrm{a}\},\{\mathrm{dog}, \mathrm{and}\},\{\mathrm{dog}, \mathrm{cat}\},\{\mathrm{cat}, \mathrm{a}\},\{\mathrm{cat}, \mathrm{and}\}$
- 1 frequent triple: $\{\mathrm{dog}, \mathrm{cat}, \mathrm{a}\}$

Frequent Itemsets: Applications

- Retailers / Supermarkets / Chain stores
- Items: Products offered
- Baskets: Sets of products purchased by one customer during one shopping run
- Frequent Itemsets: Products purchased together unusually often Beer and diapers
- Related concepts
- Items: Words, excluding stop words
- Baskets: News articles, documents
- Frequent Itemsets: Groups of words representing joint concept
- Plagiarism
- Items: Documents
- Baskets: Sentences
- Frequent Itemsets: Documents containing unusually many sentences in common

Association Rules

- Let j be an item and I be an itemset
- An association rule

$$
I \rightarrow j
$$

expresses that if I is likely to appear in a basket, so is j

- In other words, if I shows in basket, one is confident to assume that j does, too

Definition [CONFIDENCE]:
The confidence of a rule $I \rightarrow j$ is defined as

$$
\begin{equation*}
\frac{\operatorname{supp}(I \cup\{j\})}{\operatorname{supp}(I)} \tag{9}
\end{equation*}
$$

that is the fraction of I containing baskets that also contain j.

Association Rules: Confidence

DEFINITION [CONFIDENCE]:
The confidence of a rule $I \rightarrow j$ is defined as

$$
\frac{\operatorname{supp}(I \cup\{j\})}{\operatorname{supp}(I)}
$$

that is the fraction of I containing baskets that also contain j.
Example from above

- Confidence of $\{c a t, d o g\} \rightarrow$ and is $3 / 5$
- Confidence of $\{$ cat $\} \rightarrow$ kitten is $1 / 6$

Association Rules: Interest

- Let n be the number of baskets overall
- Confidence for $I \rightarrow j$ can be meaningless if fraction of baskets containing j is large
- Confidence may just reflect that fraction
- So presence of I does not increase confidence to see j as well
- Interest is supposed to put this into context

Definition [Interest]:
The interest of a rule $I \rightarrow j$ is defined as

$$
\begin{equation*}
\frac{\operatorname{supp}(I \cup\{j\})}{\operatorname{supp}(I)}-\frac{\operatorname{supp}(\{j\})}{n} \tag{10}
\end{equation*}
$$

that is the confidence of $I \rightarrow j$ minus the fraction of baskets that contain j

Association Rules: Interest

Definition [Interest]:
The interest of a rule $I \rightarrow j$ is defined as

$$
\frac{\operatorname{supp}(I \cup\{j\})}{\operatorname{supp}(I)}-\frac{\operatorname{supp}(\{j\})}{n}
$$

that is the confidence of $I \rightarrow j$ minus the fraction of baskets that contain j

Examples

- \{diapers $\} \rightarrow$ beer was found to have great interest
- $\{\operatorname{dog}\} \rightarrow$ cat has interest $5 / 7-3 / 4=-0.036$
- $\{$ cat $\} \rightarrow$ kitten has interest $1 / 6-1 / 8=0.042$

Frequent Itemsets to Association Rules

Situation

- Consider frequent itemsets of "reasonably high" support s
- Note that each frequent itemset suggests to be acted upon keep their number reasonably low
- Reasonably high often means about 1% of baskets
- Confidence for a rule $I \rightarrow j$ should be at least (about) 50% Support for $I \cup\{j\}$ also fairly high

Procedure

- Assume all I with $\operatorname{supp}(I) \geq s$ have been mined
- For J of n items with $\operatorname{supp}(J) \geq s$, there are n possible association rules $J \backslash\{j\} \rightarrow J$
- $\operatorname{supp}(J) \geq s$ implies $\operatorname{supp}(J \backslash\{j\}) \geq s$
- Confidence of $J \backslash\{j\} \rightarrow J$ is easily computed as

$$
\frac{\operatorname{supp}(J)}{\operatorname{supp}(J \backslash\{j\})}
$$

Mining Frequent Itemsets The A-Priori Algorithm

Market-Basket Data: Representation

- Market-basket data is stored in a file basket-by-basket
- If items refer to identifiers, for example $\{3,36,99\}\{6,78,11\} \ldots$
- Assumption: Average size of basket is rather small
- Usually, file does not fit in main memory
- Generating all subsets of size k for a basket of size n requires

$$
\binom{n}{k} \approx \frac{n^{k}}{k!}
$$

runtime

- This often is little time because
- n was assumed to be small
- k is usually very small
- When k is large, one can virtually reduce n further by removing infrequent items

Market-Basket Data: Runtime Consideration

Insight

- Runtime is dominated by transferring data from disk to main memory
- Consequence: Processing all baskets is proportional to size of file
- Runtime of algorithm is proportional to number of passes through file
- For a fast frequent itemset mining algorithm:

Limit number of passes through basket file

Use of Main Memory

- Issue: One needs to store counts for itemsets of size k
- There could be many such itemsets
- How to store these counts?
- Consequence: There is a limit on the number of items an algorithm can deal with
- Example:
- Let there be n items
- For counting pairs, we need to store $\binom{n}{2} \approx n^{2} / 2$ counts
- Integers of 4 bytes: need $2 n^{2}$ bytes to store counts
- Consider machine of 2 GB , or $\approx 2^{31}$ bytes of main memory
- Then $n<2^{15} \approx 33000$ is required
- Note: Items can be hashed to integers, if they are not integers

Storing Itemset Counts: The Triangular-Matrix Method

- In the following, consider storing itemsets of size 2
- Remember that support threshold is quite large in real applications
- So, many more pairs than triples, quadruples and so on in real applications
- Insight: Storing counts $a[i, j]$ in matrix $A=(a[i, j])_{1 \leq i<j \leq n} \in \mathbb{N}^{n \times n}$ wastes half of A
- Solution: Store count for pair of items $\{i, j\}, 1 \leq i<j \leq n$ in

$$
\begin{equation*}
a[k] \quad \text { where } \quad k=(i-1)\left(n-\frac{i}{2}\right)+j-i \tag{11}
\end{equation*}
$$

This stores pairs in lexicographical order

$$
\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3\}, \ldots,\{2, n\}, \ldots,\{n-2, n\},\{n-1, n\}
$$

Storing Itemset Counts: The Triples Method

- Store triples $[i, j, c]$ for all pairs $\{i, j\}$ whose count $c>0$
- For example, do this with hash table, hashing i, j as search key
- Advantage: Does not require space for pairs $\{i, j\}$ of count zero
- Disadavantage: Requires three times the space if $c>0$
- Rationale: Triangular matrix method better if at least $1 / 3$ of the $\binom{n}{2}$ pairs appear in basket

Storing Itemset Counts: Example

Example

- Consider
- 100000 items
- 10000000 baskets of
- 10 items each
- Triangular-matrix method: $\binom{10^{5}}{2} \approx 5 \times 10^{9}$ integer counts
- Triples method: $10^{7}\binom{10}{2} \approx 4.5 \times 10^{8}$ counts, making for $3 \times 4.5 \times 10^{8}=1.35 \times 10^{9}$ integers to be stored
- Triples method proves to be more appropriate

MONOTONICITY

THEOREM [MONOTONICITY]:

- Let s be the support threshold.
- Let I, J be sets such that $J \subseteq I$

Then if I is frequent, any subset J of I is, too:

$$
\begin{equation*}
\operatorname{supp}(I) \geq s \quad \text { implies } \quad \operatorname{supp}(J) \geq s \tag{12}
\end{equation*}
$$

Proof.

Each basket that holds I also holds J, as J is contained in I. So, the number of baskets that hold J is at least as large as the number of baskets that hold I.

Maximal Frequent Itemset

Definition [Maximal Frequent Itemset]:

- Let s be the support threshold.
- Let I be frequent, that is $\operatorname{supp}(I) \geq s$.
I is said to be maximal if no superset of I is frequent:

$$
\begin{equation*}
\text { for all } J \supsetneq I: \operatorname{supp}(J)<s \tag{13}
\end{equation*}
$$

Example (from above):

- At support threshold $s=3$, we found frequent pairs $\{\operatorname{dog}, a\},\{\operatorname{dog}$, and $\},\{d o g, c a t\},\{c a t, a\},\{c a t$, and $\}$
- $\{\operatorname{dog}, c a t, a\}$ was found the only frequent triple
$\{d o g, c a t, a\},\{d o g$, and $\}$ and $\{c a t$, and $\}$ are maximal, while unversitiât $\{d o g, a\},\{d o g, c a t\},\{c a t, a\}$ are not
BIELEFELD

Note on Counting Pairs

- The number of frequent pairs is larger than frequent triples, quadruples, ... why?
- For making sense, number of (maximal) frequent itemsets is supposed to be sufficiently small
- Human applicants need to work it out on all of them
- So, support threshold is set sufficiently high
- Any maximal frequent itemset holds many more smaller, non-maximal frequent itemsets
- The resulting situation implies that there are many more frequent pairs than triples, many more frequent triples than quadruples, and so on
- Important:
- Still, the possible number of triples, quadruples is (much) greater than pairs
- Any good frequent itemset algorithm needs to avoid running through all possible triples, quadruples, and so on

Monotonicity to the Rescue

Itemsets for items A,B,C,D,E
Neglecting supersets of infrequent pair $\{\mathrm{A}, \mathrm{B}\}$
Adopted from mmds.org

A-Priori Algorithm: Motivation

In the following, we focus on determining frequent pairs.
Naive Approach
Consider the algorithm

- For each basket, use double loop to generate all pairs contained in it
- For each pair generated, add 1 to its count
- Store counts using triangular or triples method
- At the end, run through all pairs and determine those whose counts exceed support threshold s
- Benefit: Only one pass through all baskets
- Issue: Number of pairs considered usually does not fit in main memory

A-Priori Algorithm: Motivation

In the following, we focus on determining frequent pairs.
Naive Approach

- Possible Benefit: Only pass through all baskets
- Issue: Number of pairs considered usually does not fit in main memory

Solution: A-Priori-Algorithm

- Have two passes through baskets instead of one
- In first run, determine candidate pairs, for which counts are stored
- In second run, determine counts for candidate pairs
- Finally filter for frequent pairs

A-Priori Algorithm: First Pass

Create and Maintain Two Tables

- First table A : Let x be an item name, then $A[x]$ reflects that x is the $A[x]$-th item in the order of their appearance in the basket file
- Second table B: Let k be an item number, then $B[k]$ is the number of baskets in which item number k appears

Read Baskets: Fill Table B

- For each basket, for each item x in the basket, do

$$
\begin{equation*}
B[A[x]]=B[A[x]]+1 \tag{14}
\end{equation*}
$$

- That is, iteratively increase item counts while running through all items in all baskets

A-Priori Algorithm: Second Pass I

- Let n be the number of items
- Let m be the number of items found to be frequent
- By user constraints, usually $m \ll n$

Create Third Table

- Third table C : Let $1 \leq k \leq n$ be an item number. Then

$$
C[k]= \begin{cases}0 & \text { if item number } k \text { is not frequent } \tag{15}\\ l & \text { if item number } k \text { was found the } l \text {-th frequent item }\end{cases}
$$

So, $C \in\{0,1, \ldots, m\}^{n}$, where

- $C[k]=0 n-m$ times
- $C[k]=i, 1 \leq i \leq m$ exactly one time
- $0<C\left[k_{1}\right]<C\left[k_{2}\right]$ implies $k_{1}<k_{2}$, expressing that C preserves the order of appearance of items

A-Priori Algorithm: Second Pass II

Count Pairs Data Structure

- Use either triangular or triples method data structure to hold counts
- For using triangular method, renumbering necessary
- By monotonicity, a pair can only be frequent, if both items are frequent
- So, space required is $O\left(m^{2}\right)$ rather than $O\left(n^{2}\right)$ $m \ll n$ implies $m^{2} \ll n^{2}$, so fits in main memory!

Examine Baskets

1. For each basket, for each item x, see whether

$$
\begin{equation*}
C[A[x]]>0 \quad \text { that is, whether } x \text { is frequent } \tag{16}
\end{equation*}
$$

2. Using double loop, generate all pairs of frequent items in the basket
3. For each such pair, increase count by one in pair count data structure

Eventually: examine which pairs are frequent in pair count data structure

A-Priori Algorithm: Main Memory Usage

Pass 1

Pass 2

Use of main memory during A-Priori passes
Adopted from mmds.org

A-Priori Algorithm: All Frequent Itemsets

- One extra pass for each $k>2$ to mine frequent itemsets of size k
- The A-Priori algorithm proceeds iteratively
- Mining frequent itemsets of size $k+1$ is based on knowing frequent itemsets of size k
- Each iteration consists of two steps for each k :
- Generate a candidate set C_{k}
- Filter candidate set C_{k} to produce L_{k}, the truly frequent itemsets of size k
- The algorithm terminates at first k where L_{k} is empty
- Monotonicity says we are done mining frequent itemsets

A-Priori Algorithm: Candidate Generation and Filtering

A-Priori algorithm: Alternating between candidate generation and filtering

> Adopted from mmds.org

- Construct: Let C_{k} be all itemsets of size k, every $k-1$ of which belong to L_{k-1}
- Filter: Make a pass through baskets to count members of C_{k}; those with count exceeding s will be part of L_{k}
- For storing counts for itemsets of size k, extend triples method
- E.g. storing quadruples for frequent triples, and so on...

Materials / Outlook

- See Mining of Massive Datasets, sections 5.4, 5.5, 6.1, 6.2
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: 'Frequent Itemsets II / Recommendation Systems"
- See Mining of Massive Datasets, 6.3, 6.4.5, 9.1, 9.2

