
Link Analysis I

Alexander Schönhuth

Bielefeld University
June 2, 2022

TODAY

Overview

I PageRank: Introduction, Definition
I PageRank Reality: Structure of the Web
I Topic-Sensitive PageRank: Classify Pages by Topics

Learning Goals: Understand these topics and get familiarized

PageRank
Introduction

PAGERANK: OVERVIEW

I Motivation of PageRank definition: history of search engines

I Concept of random surfers foundation of PageRank’s
effectiveness

I Taxation (“recycling of random surfers”) allows to deal with
problematic web structures

HISTORY: EARLY SEARCH ENGINES

I Early search engines

I Crawl the (entire) web
I List all terms encountered in an inverted index

I An inverted index is a data structure that, given a term, provides
pointers to all places where term occurs

I On a search query (a list of terms)
I pages with those terms are extracted from the index
I ranked according to use of terms within pages
I E.g. the term appearing in the header renders page more

important
I or the term appearing very often

TERM SPAM

I Spammers exploited this to their advantage

I Simple strategy:

I Add terms thousands of times to own webpages
I Terms can be made hidden by using background color
I So pages are listed in searches that do not relate to page contents
I Example: add term “movie” 1000 times to page that advertizes

shirts

I Alternative strategy:

I Carry out web search on term
I Copy-paste highest ranked page into own page
I Upon new search on term, own page will be listed high up

I Corresponding techniques are referred to as term spam

PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

IDEA:
I Simulate random web surfers

I They start at random pages
I They randomly follow web links leaving the page
I Iterate this procedure sufficiently many times
I Eventually, they gather at “important” pages

I Judge page also by contents of surrounding pages

I Difficult to add terms to pages not owned by spammer

PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

JUSTIFICATION

I Ranking web pages by number of in-links does not work
I Spammers create “spam farms” of dummy pages all linking to one page

I But, spammers’ pages do not have in-links from elsewhere

+ Random surfers do not wind up at spammers’ pages
I (Non-spammer) page owners place links to pages they find helpful
I Random surfers indicate which pages are likely to visit

+ Users are more likely to visit useful pages

PAGERANK: DEFINITION

I PageRank is a function that assigns a real number to each
(accessible) web page

I Intuition: The higher the PageRank, the more important the page

I There is not one fixed algorithm for computing PageRank

I There are many variations, each of which caters to particular
issue

PAGERANK: DEFINITION

I Consider the web as a directed graph
I Nodes are web pages
I Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I For example, a random surfer starts at node A

I Walks to B,C,D each with probability 1/3

I So has probability 0 to be at A after first step

PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I Random surfer at B, for example, in next step
I is at A,D each with probability 1/2
I is at B,C with probability 0

WEB TRANSITION MATRIX: DEFINITION

DEFINITION [WEB TRANSITION MATRIX]:

I Let n be the number of pages in the web

I The transition matrix M = (mij)1i,jn 2 Rn⇥n has n rows and
columns

I For each (i, j) 2 {1, ..., n}⇥ {1, ..., n}
I mij = 1/k, if page j has k arcs out, of which one leads to page i

I mij = 0 otherwise

Transition matrix for web from slides before
Adopted from mmds.org

PAGERANK FUNCTION: DEFINITION

DEFINITION [PAGERANK FUNCTION]:

I Let n be the number of pages in the web

I Let p
t

i
, i = 1, ..., n be the probability that the random surfer is at

page i after t steps

I The PageRank function for t � 0 is defined to be the vector

p
t = (pt

1, p
t

2, ..., p
t

n
) 2 [0, 1]n

PAGERANK FUNCTION: INTERPRETATION

I Usually, p
0 = (1/n, ...1/n) for each i = 1, ..., n

I So before the first iteration, the random surfer is at each page
with equal probability

I The probability to be at page i in step t + 1 is the sum of
probabilities to be at page j in step t times the probability to
move from page j to i

I That is, p
t+1
i

=
P

n

j=1 mijp
t

j
for all i, t, or, in other words

p
t+1 = Mp

t for all t � 0 (1)

I So, applying the web transition matrix to a PageRank function
yields another one

PAGERANK FUNCTION: MARKOV PROCESSES

p
t+1 = Mp

t for all t � 0

I This relates to the theory of Markov processes

I Given that the web graph is strongly connected

I That is: one can reach any node from any other node
I In particular, there are no dead ends, nodes with no arcs out

I it is known that the surfer reaches a limiting distribution p̄,
characterized by

Mp̄ = p̄ (2)

PAGERANK FUNCTION: MARKOV PROCESSES

Mp̄ = p̄

I Further, because M is stochastic (= columns each add up to one)
I p̄ is the principal eigenvector, which is
I the eigenvector associated with the largest eigenvalue, which is

one

I p̄i is the probability that the surfer is at page i after a long time

I Principal eigenvector of M expresses where the surfer will end
up

I Reasoning: The greater p̄i, the more important page i

p_i^{-} is page rank of page i

PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I It holds that
M

t
p

0 �!
t!1

p̄ (3)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence

I Example: Iterative application of transition matrix from above

Convergence to limiting distribution for four-node web graph
Adopted from mmds.org

p^0 -> Mp^0 = p^1 -> Mp^1 = p^2 -> …
p^{-}

PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I It holds that
M

t
p0 �!

t!1
p̄ (4)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence

I In practice, working real web graphs
I 50-75 iterations do just fine
I For efficient computation, recall MapReduce based matrix-vector

multiplication techniques

PageRank Reality
Dead Ends and Spider Traps

STRUCTURE OF THE WEB

Bowtie picture of the web

Adopted from mmds.org

WEB BOWTIE: SUMMARY

I Strongly connected component (SCC): core of the web

I In-component (IC):

I One can reach SCC from IC
I but not return to IC once left

I Out-component (OC):

I Can be reached from SCC
I but no longer be left

I Tendrils:

I First type: reachable from IC, but can no longer be left
I Second type: can reach OC, but cannot be returned to

I Tubes:

I Can be reached from IC
I Can only reach OC

I Isolated components are not reachable from and cannot reach other
components

BOWTIE AND MARKOV CHAINS

Issue: Limiting Distribution

I Random surfers will inevitably wind up in out-component

I Limiting distribution has probability 0 on IC and SCC

+ No page in IC or SCC of importance

PageRank Modification

I Avoid dead ends, single pages with no outlinks

I Avoid spider traps, sets of pages without dead ends, but no arcs
out

I Solution: Taxation

I Assume random surfer has small probability to leave the web
I Instead, new surfer starts at random node of the web

DEAD ENDS

Web graph with dead end (node C)
Adopted from mmds.org

I Dead end = columns of all zeroes in the web transition matrix M

I M then is substochastic (= column sums at most 1)
I M

i
v yields vector with zeroes for certain components

I Dead ends drain out the web

DEAD ENDS

Transition matrix for web with dead end (node C)
Adopted from mmds.org

Corresponding limiting distribution
Adopted from mmds.org

AVOIDING DEAD ENDS

Dropping dead ends: Procedure

I Drop dead ends from graph, and corresponding edges

I Dropping dead ends may create more dead ends

I Keep dropping dead ends iteratively

Dropping dead ends: Consequences

I Removes parts of out-component, tendrils and tubes

I Leaves SCC and in-component

AVOIDING DEAD ENDS

Graph before (left) and after iterative removal of dead ends (right)

DROPPING DEAD ENDS: PAGERANK COMPUTATION

1. After iterative removal of dead ends, compute PageRank for
remaining core nodes

2. Re-introduce nodes iteratively, in reverse order relative to their
removal

3. PageRank for re-introduced node: sum over all predecessors,
PageRank of predecessor p divided by the number of successors
of p

DEAD ENDS

Transition matrix after removal of dead ends

PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9

Adopted from mmds.org

DEAD ENDS: PAGERANK COMPUTATION

1. From core: PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9

2. Re-introduce node C first:
PageRank(C) = 1/3 ⇥ PageRank(A) + 1/2 ⇥ PageRank(D) = 13

54

3. Then re-introduce node E: PageRank(E) = 1 ⇥ PageRank(C) = 13
54

SPIDER TRAPS

Web graph with spider trap (set containing single node C)
Adopted from mmds.org

I (Small) group of nodes with no dead ends, but no arcs out
I Can appear intentionally or unintentionally
I “Soak up” all PageRank

SPIDER TRAPS

Transition matrix for web with single node spider trap (third column)
Adopted from mmds.org

Corresponding limiting distribution
Adopted from mmds.org

SPIDER TRAPS: TAXATION

I Allow the random surfer to get teleported to a random page

I Notation:

I Let n be the total number of web pages
I Let e := (1, ..., 1) be the vector of length n with all entries one
I Let � be a small constant; usually 0.8  �  0.9

I Taxation: In each matrix-vector multiplication iteration, instead
of just computing v0 = Mv, compute

v0 = �Mv +
1
n
(1 � �)e = �Mv + (1 � �)(

1
n
, ...,

1
n
)T (5)

to obtain a new vector v0 from the actual one v

SPIDER TRAPS: TAXATION

I Taxation: In each matrix-vector multiplication iteration, instead
of just computing v0 = Mv, compute

v0 = �Mv + (1 � �)(
1
n
, ...,

1
n
)T

to obtain a new vector v0 from the actual one v

I Interpretation:

I With probability �, the surfer follows an out-link
I With probability 1 � �, the surfer get teleported to a random page
I In dead ends, surfer disappears with probability �
I So if there are dead ends, sum of entries in v

0 less than one
+ So remove dead ends first

SPIDER TRAPS

Iteration with taxation, with spider trap (third column)
Adopted from mmds.org

Corresponding limiting distribution
Adopted from mmds.org

PAGERANK: EFFICIENT COMPUTATION

I PageRank virtually is matrix-vector multiplication
I Consider MapReduce techniques (originally motivated by

PageRank)

I Caveats, however:
I Transition matrix M is very sparse; consider appropriate

representation of M

I To reduce communication cost, use combiners
I Earlier striping technique not sufficient

I So, additional techniques necessary:

see https://mmds.org, section 5.2

Topic-Sensitive PageRank

TOPIC-SENSITIVE PAGERANK: MOTIVATION

I Different people have different interests, but ...

I ... different interests are expressed by identical terms
I E.g. jaguar may refer to animal, automobile, operating system,

game console

I Ideally: Each user has private PageRank vector that measures
individual importance of pages

I But: It is not feasible to store a vector of length many billions for
one billion users

TOPIC-SENSITIVE PAGERANK: BASIC IDEA

I Identify a (rather small) number of topics

I Compute topic specific PageRank vectors
I Store topic vectors ...
I ... instead of individual user vectors
I There are much less topic vectors
I Example for useful topics: See https://www.curlie.org/ (new)

or https://www.dmoz-odp.org for top-level categories

I Assign users to (weighted combination of) topic vectors

I Drawback: Looses accuracy

I Benefit: Saves massive amounts of space

TOPIC-SENSITIVE PAGERANK: COMPUTATION

Idea: Biased Random Walks

I Simulate random surfers that are to prefer pages adhering to
particular topics

I Random surfers start at approved topic-specific pages only

I When surfing, they will preferably visit pages linked from
topic-specific pages

I Such pages are likely to deal with topic as well

I When being re-introduced (to avoid dead ends, spider traps),
surfers again start at approved pages

TOPIC-SENSITIVE PAGERANK: DEFINITION

I Let S be the teleport set, i.e. the pages that are approvedly
topic-specific

I Let n, v, v0,M,� be as before

I Let eS 2 {0, 1}n be a bit vector of length n such that

eS[i] =

(
1 if i-th page belongs to S

0 otherwise
(6)

DEFINITION [TOPIC-SENSITIVE PAGERANK]
The topic-sensitive PageRank for S is the limit of the iteration

v0 = �Mv + (1 � �)
eS

|S| (7)

where |S| is the cardinality (size) of S.

TOPIC-SENSITIVE PAGERANK: EXAMPLE

Example web graph
Adopted from mmds.org

Corresponding weighted web transition matrix
Adopted from mmds.org

TOPIC-SENSITIVE PAGERANK: EXAMPLE II

Topic sensitive PageRank computation iteration for teleport set {B,D}
Adopted from mmds.org

Corresponding limiting distribution
Adopted from mmds.org

TOPIC-SENSITIVE PAGERANK: PRACTICAL
CONSIDERATIONS

I Pick an appropriate set of topics

I For each topic selected, determine teleport set

I Classifying documents by topic

I Has been studied in great detail
I Topics are characterized by words relating to topic
I Such words appear surprisingly often in topic-specific pages
I Determine such words from pages known to relate to topic

beforehand
I Remember the TF.IDF measure (first lecture)

TOPIC-SENSITIVE PAGERANK: PRACTICAL
CONSIDERATIONS

I When confronted with search query, decide on related topics

I Determining user-specific topics:

I Allow user to choose from menu
I Infer topics from words appearing in recent queries
I Infer topics from information on user (bookmarks, stated interests

in social media,...)

I Use corresponding topic-sensitive PageRank vectors for ranking
responses

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapters 5.1; 5.3 – 5.5

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Frequent Itemsets I”
I See Mining of Massive Datasets chapter 6.1, 6.2, 6.3.1, 6.4.1,

6.4.2

