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TODAY

Overview
» PageRank: Introduction, Definition
» PageRank Reality: Structure of the Web
» Topic-Sensitive PageRank: Classify Pages by Topics

Learning Goals: Understand these topics and get familiarized
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PageRank
Introduction
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PAGERANK: OVERVIEW

» Motivation of PageRank definition: history of search engines

» Concept of random surfers foundation of PageRank’s
effectiveness

» Taxation (“recycling of random surfers”) allows to deal with
problematic web structures
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HISTORY: EARLY SEARCH ENGINES

» Early search engines

» Crawl the (entire) web

» List all terms encountered in an inverted index

» Aninverted index is a data structure that, given a term, provides
pointers to all places where term occurs

» On a search query (a list of terms)

» pages with those terms are extracted from the index

» ranked according to use of terms within pages

» E.g. the term appearing in the header renders page more
important

» or the term appearing very often

UNIVERSITAT
BIELEFELD



TERM SPAM

» Spammers exploited this to their advantage

» Simple strategy:

» Add terms thousands of times to own webpages

» Terms can be made hidden by using background color

» So pages are listed in searches that do not relate to page contents

» Example: add term “movie” 1000 times to page that advertizes
shirts

» Alternative strategy:

» Carry out web search on term
» Copy-paste highest ranked page into own page
» Upon new search on term, own page will be listed high up

» Corresponding techniques are referred to as term spam
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PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

IDEA:

» Simulate random web surfers

» They start at random pages

» They randomly follow web links leaving the page
Iterate this procedure sufficiently many times

» Eventually, they gather at “important” pages

v

» Judge page also by contents of surrounding pages

» Difficult to add terms to pages not owned by spammer
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PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

JUSTIFICATION

v

Ranking web pages by number of in-links does not work
» Spammers create “spam farms” of dummy pages all linking to one page
But, spammers’ pages do not have in-links from elsewhere

>

= Random surfers do not wind up at spammers’ pages

» (Non-spammer) page owners place links to pages they find helpful
>

Random surfers indicate which pages are likely to visit
1 Users are more likely to visit useful pages
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PAGERANK: DEFINITION

» PageRank is a function that assigns a real number to each
(accessible) web page

» Intuition: The higher the PageRank, the more important the page
» There is not one fixed algorithm for computing PageRank

» There are many variations, each of which caters to particular
issue
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PAGERANK: DEFINITION

» Consider the web as a directed graph

» Nodes are web pages
» Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages

Adopted from mmds . org
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PAGERANK: DEFINITION

Random walking a web with four pages

Adopted from mmds . org

» For example, a random surfer starts at node A
» Walks to B, C, D each with probability 1/3
» So has probability 0 to be at A after first step
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PAGERANK: DEFINITION

Random walking a web with four pages

Adopted from mmds . org

» Random surfer at B, for example, in next step
» isat A, D each with probability 1/2
» isat B, C with probability 0
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WEB TRANSITION MATRIX: DEFINITION

DEFINITION [WEB TRANSITION MATRIX]:

» Let n be the number of pages in the web

» The transition matrix M = (m;j)1<;j<n € R"*" has n rows and
columns

» Foreach (i,j) € {1,....n} x {1,...,n}

» m;; = 1/k, if page j has k arcs out, of which one leads to page i
» m;; = 0 otherwise

0 12 1 0
s o0 o0 12
M=143 0 o 12
1/3 1/2 0 0

Transition matrix for web from slides before

Adopted from mmds . org
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PAGERANK FUNCTION: DEFINITION

DEFINITION [PAGERANK FUNCTION]:

» Let 1 be the number of pages in the web

» Letp!,i=1,...,nbe the probability that the random surfer is at
page i after t steps

» The PageRank function for t > 0 is defined to be the vector

pt = (piapév ""pil) € [Oal]n
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PAGERANK FUNCTION: INTERPRETATION

|

>

Usually, p° = (1/n,...1/n) foreachi=1,...,n

So before the first iteration, the random surfer is at each page
with equal probability

The probability to be at page i in step t + 1 is the sum of
probabilities to be at page j in step t times the probability to
move from pagejtoi

That s, ™' = 27:1 mijp; for all i, t, or, in other words
Pt =Mp' forallt>0 (1)

So, applying the web transition matrix to a PageRank function
yields another one
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PAGERANK FUNCTION: MARKOV PROCESSES

p'tt=Mp' forallt >0

» This relates to the theory of Markov processes

» Given that the web graph is strongly connected

» That is: one can reach any node from any other node
» In particular, there are no dead ends, nodes with no arcs out

» it is known that the surfer reaches a limiting distribution p,
characterized by
Mp=p
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PAGERANK FUNCTION: MARKOV PROCESSES

Mp=p

» Further, because M is stochastic (= columns each add up to one)

» pis the principal eigenvector, which is
» the eigenvector associated with the largest eigenvalue, which is
one

» p; is the probability that the surfer is at page 7 after a long time

» Principal eigenvector of M expresses where the surfer will end
up
» Reasoning: The greater p;, the more important page i

p_i™-} is page rank of page i
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PAGERANK FUNCTION: COMPUTATION

Mp =p
» It holds that
My’ — p (3)
t—oo PO ->MpA0 = pAl-=>MpAl = pA2 > ...

P
» So, for computing p, apply iterative matrix-vector multiplication

until (approximate) convergence

» Example: Iterative application of transition matrix from above

1/4 9/24 15/48 11/32 3/9
1/4 5/24 11/48 7/32 2/9
14 || 5/24 || 11748 || 7y32 | 2/9
1/4 5/24 11/48 7/32 2/9

Convergence to limiting distribution for four-node web graph

Adopted from mmds . org

UNIVERSITAT
BIELEFELD



PAGERANK FUNCTION: COMPUTATION

Mp=p
» It holds that
M'py oo P 4)

» So, for computing p, apply iterative matrix-vector multiplication
until (approximate) convergence

» In practice, working real web graphs

» 50-75 iterations do just fine
» For efficient computation, recall MapReduce based matrix-vector
multiplication techniques
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PageRank Reality
Dead Ends and Spider Traps
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STRUCTURE OF THE WEB

IN

> Central core
44 million pages\ ReLilion pacey

Bowtie picture of the web
Adopted from mmds . org
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WEB BOWTIE: SUMMARY

v

Strongly connected component (SCC): core of the web

v

In-component (IC):

» One can reach SCC from IC
» but not return to IC once left

v

Out-component (OC):

» Can be reached from SCC
» but no longer be left

Tendprils:

»  First type: reachable from IC, but can no longer be left
»  Second type: can reach OC, but cannot be returned to

Tubes:

» Can be reached from IC
» Can only reach OC

v

v

» Isolated components are not reachable from and cannot reach other
components
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BOWTIE AND MARKOV CHAINS

Issue: Limiting Distribution

» Random surfers will inevitably wind up in out-component

» Limiting distribution has probability 0 on IC and SCC

1= No page in IC or SCC of importance

PageRank Modification

» Avoid dead ends, single pages with no outlinks

» Avoid spider traps, sets of pages without dead ends, but no arcs
out

» Solution: Taxation

» Assume random surfer has small probability to leave the web
» Instead, new surfer starts at random node of the web
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DEAD ENDS

Web graph with dead end (node C)
Adopted from mmds . org

» Dead end = columns of all zeroes in the web transition matrix M
» M then is substochastic (= column sums at most 1)

> Mo yields vector with zeroes for certain components

» Dead ends drain out the web
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DEAD ENDS

0 1/2 0 0
o130 0 12
M=1193 0 0 1)

1/3 1/2 0 0

Transition matrix for web with dead end (node C)

Adopted from mmds . org

1/4 3/24 5/48 21/288
1/4 5/24 7/48 31/288
1/4 || 5/24 || 7/48 | "] 317288 |
1/4 5/24 7/48 31/288

Corresponding limiting distribution

Adopted from mmds . org
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AVOIDING DEAD ENDS

Dropping dead ends: Procedure

» Drop dead ends from graph, and corresponding edges
» Dropping dead ends may create more dead ends

» Keep dropping dead ends iteratively

Dropping dead ends: Consequences

» Removes parts of out-component, tendrils and tubes

» Leaves SCC and in-component
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AVOIDING DEAD ENDS
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Graph before (left) and after iterative removal of dead ends (right)




DROPPING DEAD ENDS: PAGERANK COMPUTATION

1. After iterative removal of dead ends, compute PageRank for
remaining core nodes

2. Re-introduce nodes iteratively, in reverse order relative to their
removal

3. PageRank for re-introduced node: sum over all predecessors,
PageRank of predecessor p divided by the number of successors
of p
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DEAD ENDS

0

1/2 0
M=|12 0 1
1/2 1/2 0

Transition matrix after removal of dead ends
1/3 1/6 3/12 5/24 2/9
1/3 |,] 3/6 | .| 5/12 |, | 11/24 |,....| 4/9
1/3 2/6 4/12 8/24 3/9
PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) =3/9

Adopted from mmds . org
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DEAD ENDS: PAGERANK COMPUTATION

1. From core: PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9

2. Re-introduce node C first:

PageRank(C) = 1/3 x PageRank(A) + 1/2 x PageRank(D) =

3. Then re-introduce node E: PageRank(E) = 1 x PageRank(C) = £
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SPIDER TRAPS

& ©,

Web graph with spider trap (set containing single node C)
Adopted from mmds . org

» “Soak up” all PageRank

UNIVERSITAT

» (Small) group of nodes with no dead ends, but no arcs out
BIELEFELD

» Can appear intentionally or unintentionally




SPIDER TRAPS

0 1/2 0 0
Sl 00 12
M=113 0 1 1)

1/3 1/2 0 0

Transition matrix for web with single node spider trap (third column)

Adopted from mmds . org

1/4 3/24 5/48 21/288 0
1/4 5/24 7/48 31/288 0
1/4 || 11724 || 20/48 || 205/288 || 1
1/4 5/24 7/48 31/288 0

Corresponding limiting distribution

Adopted from mmds . org
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SPIDER TRAPS: TAXATION

» Allow the random surfer to get teleported to a random page

» Notation:

» Let n be the total number of web pages
» Lete:= (1,...,1) be the vector of length n with all entries one
» Let 3 be a small constant; usually 0.8 < g < 0.9

» Taxation: In each matrix-vector multiplication iteration, instead

of just computing v/ = Mv, compute

, 1 _ el L
v—ﬁMv—i—E(l—ﬁ)e—ﬁMv—i-(l ﬁ)(n,---,n) )

to obtain a new vector v’ from the actual one v
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SPIDER TRAPS: TAXATION

» Taxation: In each matrix-vector multiplication iteration, instead
of just computing v/ = Mv, compute

V= MY+ (1= B )T

to obtain a new vector v’ from the actual one v

» Interpretation:

» With probability f, the surfer follows an out-link
» With probability 1 — §3, the surfer get teleported to a random page
» In dead ends, surfer disappears with probability
» So if there are dead ends, sum of entries in v’ less than one
i So remove dead ends first
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SPIDER TRAPS

0 w [ 1/20 w
2/5 1/20
2/5 1 VT 1 1720
0

IR

Iteration with taxation, with spider trap (third column)

Adopted from mmds . org

1/4 9/60 41/300 543/4500 15/148
1/4 13/60 53/300 707/4500 19/148
1/4 || 25/60 || 153/300 || 2543/4500 || 95/148
1/4 13/60 53/300 707/4500 19/148

Corresponding limiting distribution

Adopted from mmds . org
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PAGERANK: EFFICIENT COMPUTATION

» PageRank virtually is matrix-vector multiplication

» Consider MapReduce techniques (originally motivated by
PageRank)

» Caveats, however:

» Transition matrix M is very sparse; consider appropriate
representation of M

» To reduce communication cost, use combiners

» Earlier striping technique not sufficient

» So, additional techniques necessary:

see https://mmds.org, section 5.2
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Topic-Sensitive PageRank
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TOPIC-SENSITIVE PAGERANK: MOTIVATION

» Different people have different interests, but ...

» ... different interests are expressed by identical terms

» E.g. jaguar may refer to animal, automobile, operating system,
game console

» Ideally: Each user has private PageRank vector that measures
individual importance of pages

» But: It is not feasible to store a vector of length many billions for
one billion users
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TOPIC-SENSITIVE PAGERANK: BASIC IDEA

v

v

>
>
>
>

Identify a (rather small) number of topics

Compute topic specific PageRank vectors

Store topic vectors ...

... instead of individual user vectors

There are much less topic vectors

Example for useful topics: See https://www.curlie.org/ (new)
or https://www.dmoz-odp.org for top-level categories

» Assign users to (weighted combination of) topic vectors

v

A\
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Drawback: Looses accuracy

Benefit: Saves massive amounts of space



TOPIC-SENSITIVE PAGERANK: COMPUTATION

Idea: Biased Random Walks

» Simulate random surfers that are to prefer pages adhering to
particular topics

» Random surfers start at approved topic-specific pages only

» When surfing, they will preferably visit pages linked from
topic-specific pages

» Such pages are likely to deal with topic as well

» When being re-introduced (to avoid dead ends, spider traps),
surfers again start at approved pages
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TOPIC-SENSITIVE PAGERANK: DEFINITION
» Let S be the teleport set, i.e. the pages that are approvedly
topic-specific
» Letn,v,v,M, 3 be as before

» Letes € {0,1}" be a bit vector of length 1 such that

, 1 if i-th page belongs to S
esli] = pag & ()
0 otherwise
DEFINITION [TOPIC-SENSITIVE PAGERANK]
The topic-sensitive PageRank for S is the limit of the iteration
V= My -+ (1= ) e @)

where |S| is the cardinality (size) of S.
BIELEFELD



TOPIC-SENSITIVE PAGERANK: EXAMPLE

Example web graph

Adopted from mmds . org

0

2/5 4/5 0
oA 4/15 0 0 2/5
pM = 4/15 0 0 2/5
4/15 2/5 0 0
UNIVERSITAT
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Corresponding weighted web transition matrix

Adopted from mmds . org
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TOPIC-SENSITIVE PAGERANK: EXAMPLE 11

0 2/5 4/5 0 0
,laas 0 0 2 1/10
V=415 0 0 25|V o

415 2/5 0 0 1/10

Topic sensitive PageRank computation iteration for teleport set {B,D}

Adopted from mmds . org

0/2 2/10 42/150 62/250 54/210
1/2 3/10 41/150 71/250 59/210
0/2 || 2/10 | " | 26/150 || 46/250 || 38/210
1/2 3/10 41/150 71/250 59/210

Corresponding limiting distribution

Adopted from mmds . org
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TOPIC-SENSITIVE PAGERANK: PRACTICAL
CONSIDERATIONS

» Pick an appropriate set of topics

» For each topic selected, determine teleport set

» Classifying documents by topic

>
>
>
>

>

UNIVERSITAT
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Has been studied in great detail

Topics are characterized by words relating to topic

Such words appear surprisingly often in topic-specific pages
Determine such words from pages known to relate to topic
beforehand

Remember the TEIDF measure (first lecture)



TOPIC-SENSITIVE PAGERANK: PRACTICAL
CONSIDERATIONS

» When confronted with search query, decide on related topics
» Determining user-specific topics:

» Allow user to choose from menu

» Infer topics from words appearing in recent queries

» Infer topics from information on user (bookmarks, stated interests
in social media,...)

» Use corresponding topic-sensitive PageRank vectors for ranking
responses
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MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapters 5.1; 5.3 - 5.5

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Frequent Itemsets 1”

» See Mining of Massive Datasets chapter 6.1, 6.2,6.3.1,6.4.1,
6.4.2
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