Link Analysis I

Alexander Schönhuth

Bielefeld University
June 2, 2022

TODAY

Overview

- PageRank: Introduction, Definition
- PageRank Reality: Structure of the Web
- Topic-Sensitive PageRank: Classify Pages by Topics

Learning Goals: Understand these topics and get familiarized

PageRank
 Introduction

PageRank: Overview

- Motivation of PageRank definition: history of search engines
- Concept of random surfers foundation of PageRank's effectiveness
- Taxation ("recycling of random surfers") allows to deal with problematic web structures

History: Early Search Engines

- Early search engines
- Crawl the (entire) web
- List all terms encountered in an inverted index
- An inverted index is a data structure that, given a term, provides pointers to all places where term occurs
- On a search query (a list of terms)
- pages with those terms are extracted from the index
- ranked according to use of terms within pages
- E.g. the term appearing in the header renders page more important
- or the term appearing very often

TERM SpAM

- Spammers exploited this to their advantage
- Simple strategy:
- Add terms thousands of times to own webpages
- Terms can be made hidden by using background color
- So pages are listed in searches that do not relate to page contents
- Example: add term "movie" 1000 times to page that advertizes shirts
- Alternative strategy:
- Carry out web search on term
- Copy-paste highest ranked page into own page
- Upon new search on term, own page will be listed high up
- Corresponding techniques are referred to as term spam

PageRank's Motivation: Fighting Term Spam

IDEA:

- Simulate random web surfers
- They start at random pages
- They randomly follow web links leaving the page
- Iterate this procedure sufficiently many times
- Eventually, they gather at "important" pages
- Judge page also by contents of surrounding pages
- Difficult to add terms to pages not owned by spammer

PageRank's Motivation: Fighting Term Spam

JUSTIFICATION

- Ranking web pages by number of in-links does not work
- Spammers create "spam farms" of dummy pages all linking to one page
- But, spammers' pages do not have in-links from elsewhere

Random surfers do not wind up at spammers' pages

- (Non-spammer) page owners place links to pages they find helpful
- Random surfers indicate which pages are likely to visit Users are more likely to visit useful pages

PageRank: Definition

- PageRank is a function that assigns a real number to each (accessible) web page
- Intuition: The higher the PageRank, the more important the page
- There is not one fixed algorithm for computing PageRank
- There are many variations, each of which caters to particular issue

PageRank: Definition

- Consider the web as a directed graph
- Nodes are web pages
- Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- For example, a random surfer starts at node A
- Walks to B, C, D each with probability $1 / 3$
- So has probability 0 to be at A after first step

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- Random surfer at B, for example, in next step
- is at A, D each with probability $1 / 2$
- is at B, C with probability 0

Web Transition Matrix: Definition

Definition [Web Transition Matrix]:

- Let n be the number of pages in the web
- The transition matrix $M=\left(m_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ has n rows and columns
- For each $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, n\}$
- $m_{i j}=1 / k$, if page j has k arcs out, of which one leads to page i
- $m_{i j}=0$ otherwise

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Transition matrix for web from slides before

PageRank Function: Definition

Definition [PageRank Function]:

- Let n be the number of pages in the web
- Let $p_{i}^{t}, i=1, \ldots, n$ be the probability that the random surfer is at page i after t steps
- The PageRank function for $t \geq 0$ is defined to be the vector

$$
p^{t}=\left(p_{1}^{t}, p_{2}^{t}, \ldots, p_{n}^{t}\right) \in[0,1]^{n}
$$

PageRank Function: Interpretation

- Usually, $p^{0}=(1 / n, \ldots 1 / n)$ for each $i=1, \ldots, n$
- So before the first iteration, the random surfer is at each page with equal probability
- The probability to be at page i in step $t+1$ is the sum of probabilities to be at page j in step t times the probability to move from page j to i
- That is, $p_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} p_{j}^{t}$ for all i, t, or, in other words

$$
\begin{equation*}
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0 \tag{1}
\end{equation*}
$$

- So, applying the web transition matrix to a PageRank function yields another one

PageRank Function: Markov Processes

$$
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0
$$

- This relates to the theory of Markov processes
- Given that the web graph is strongly connected
- That is: one can reach any node from any other node
- In particular, there are no dead ends, nodes with no arcs out
- it is known that the surfer reaches a limiting distribution \bar{p}, characterized by

$$
\begin{equation*}
M \bar{p}=\bar{p} \tag{2}
\end{equation*}
$$

PageRank Function: Markov Processes

$$
M \bar{p}=\bar{p}
$$

- Further, because M is stochastic (= columns each add up to one)
- \bar{p} is the principal eigenvector, which is
- the eigenvector associated with the largest eigenvalue, which is one
- \bar{p}_{i} is the probability that the surfer is at page i after a long time
- Principal eigenvector of M expresses where the surfer will end up
- Reasoning: The greater \bar{p}_{i}, the more important page i
$\mathrm{p}_{-} \mathrm{i}^{\wedge}\{-\}$ is page rank of page i

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- It holds that

$$
\begin{equation*}
M^{t} p^{0} \underset{t \rightarrow \infty}{\longrightarrow} \quad \bar{p} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{p}^{\wedge} 0->\mathrm{Mp}^{\wedge} 0=\mathrm{p}^{\wedge} 1->\mathrm{Mp} \wedge 1=\mathrm{p}^{\wedge} 2->\ldots \\
& \mathrm{p}^{\wedge}\{-\}
\end{aligned}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence
- Example: Iterative application of transition matrix from above

$$
\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right],\left[\begin{array}{l}
9 / 24 \\
5 / 24 \\
5 / 24 \\
5 / 24
\end{array}\right],\left[\begin{array}{l}
15 / 48 \\
11 / 48 \\
11 / 48 \\
11 / 48
\end{array}\right],\left[\begin{array}{r}
11 / 32 \\
7 / 32 \\
7 / 32 \\
7 / 32
\end{array}\right], \ldots,\left[\begin{array}{l}
3 / 9 \\
2 / 9 \\
2 / 9 \\
2 / 9
\end{array}\right]
$$

Convergence to limiting distribution for four-node web graph

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- It holds that

$$
\begin{equation*}
M^{t} p_{0} \underset{t \rightarrow \infty}{\longrightarrow} \quad \bar{p} \tag{4}
\end{equation*}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence
- In practice, working real web graphs
- 50-75 iterations do just fine
- For efficient computation, recall MapReduce based matrix-vector multiplication techniques

PageRank Reality Dead Ends and Spider Traps

Structure of the Web

Bowtie picture of the web
Adopted from mmds. org

Web Bowtie: Summary

- Strongly connected component (SCC): core of the web
- In-component (IC):
- One can reach SCC from IC
- but not return to IC once left
- Out-component (OC):
- Can be reached from SCC
- but no longer be left
- Tendrils:
- First type: reachable from IC, but can no longer be left
- Second type: can reach OC, but cannot be returned to
- Tubes:
- Can be reached from IC
- Can only reach OC
- Isolated components are not reachable from and cannot reach other components

Bowtie and Markov Chains

Issue: Limiting Distribution

- Random surfers will inevitably wind up in out-component
- Limiting distribution has probability 0 on IC and SCC

No page in IC or SCC of importance

PageRank Modification

- Avoid dead ends, single pages with no outlinks
- Avoid spider traps, sets of pages without dead ends, but no arcs out
- Solution: Taxation
- Assume random surfer has small probability to leave the web
- Instead, new surfer starts at random node of the web

DEAd Ends

Web graph with dead end (node C)
Adopted from mmds.org

- Dead end = columns of all zeroes in the web transition matrix M
- M then is substochastic (= column sums at most 1)
- $M^{i} v$ yields vector with zeroes for certain components
- Dead ends drain out the web

Dead Ends

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Transition matrix for web with dead end (node C)
Adopted from mmds.org

$$
\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right],\left[\begin{array}{l}
3 / 24 \\
5 / 24 \\
5 / 24 \\
5 / 24
\end{array}\right],\left[\begin{array}{l}
5 / 48 \\
7 / 48 \\
7 / 48 \\
7 / 48
\end{array}\right],\left[\begin{array}{l}
21 / 288 \\
31 / 288 \\
31 / 288 \\
31 / 288
\end{array}\right], \ldots,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Corresponding limiting distribution
Adopted from mmds.org

Avoiding Dead Ends

Dropping dead ends: Procedure

- Drop dead ends from graph, and corresponding edges
- Dropping dead ends may create more dead ends
- Keep dropping dead ends iteratively

Dropping dead ends: Consequences

- Removes parts of out-component, tendrils and tubes
- Leaves SCC and in-component

Avoiding Dead Ends

Graph before (left) and after iterative removal of dead ends (right)

Dropping Dead Ends: Pagerank Computation

1. After iterative removal of dead ends, compute PageRank for remaining core nodes
2. Re-introduce nodes iteratively, in reverse order relative to their removal
3. PageRank for re-introduced node: sum over all predecessors, PageRank of predecessor p divided by the number of successors of p

Dead Ends

$$
M=\left[\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Transition matrix after removal of dead ends

$$
\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right],\left[\begin{array}{l}
1 / 6 \\
3 / 6 \\
2 / 6
\end{array}\right],\left[\begin{array}{l}
3 / 12 \\
5 / 12 \\
4 / 12
\end{array}\right],\left[\begin{array}{r}
5 / 24 \\
11 / 24 \\
8 / 24
\end{array}\right], \ldots,\left[\begin{array}{l}
2 / 9 \\
4 / 9 \\
3 / 9
\end{array}\right]
$$

$\operatorname{PageRank}(A)=2 / 9, \operatorname{PageRank}(B)=4 / 9, \operatorname{PageRank}(D)=3 / 9$

Adopted from mmds.org

Dead Ends: Pagerank Computation

1. From core: $\operatorname{PageRank}(A)=2 / 9, \operatorname{PageRank}(B)=4 / 9, \operatorname{PageRank}(D)=3 / 9$
2. Re-introduce node C first:
$\operatorname{PageRank}(C)=1 / 3 \times \operatorname{PageRank}(A)+1 / 2 \times \operatorname{PageRank}(D)=\frac{13}{54}$
3. Then re-introduce node E: $\operatorname{PageRank}(E)=1 \times \operatorname{PageRank}(C)=\frac{13}{54}$

Spider Traps

Web graph with spider trap (set containing single node C)
Adopted from mmds.org

- (Small) group of nodes with no dead ends, but no arcs out
- Can appear intentionally or unintentionally
- "Soak up" all PageRank

Spider Traps

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 1 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Transition matrix for web with single node spider trap (third column)
Adopted from mmds.org

$$
\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right],\left[\begin{array}{r}
3 / 24 \\
5 / 24 \\
11 / 24 \\
5 / 24
\end{array}\right],\left[\begin{array}{r}
5 / 48 \\
7 / 48 \\
29 / 48 \\
7 / 48
\end{array}\right],\left[\begin{array}{r}
21 / 288 \\
31 / 288 \\
205 / 288 \\
31 / 288
\end{array}\right], \ldots,\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Corresponding limiting distribution
Adopted from mmds.org

Spider Traps: Taxation

- Allow the random surfer to get teleported to a random page
- Notation:
- Let n be the total number of web pages
- Let $\mathbf{e}:=(1, \ldots, 1)$ be the vector of length n with all entries one
- Let β be a small constant; usually $0.8 \leq \beta \leq 0.9$
- Taxation: In each matrix-vector multiplication iteration, instead of just computing $\mathbf{v}^{\prime}=M \mathbf{v}$, compute

$$
\begin{equation*}
\mathbf{v}^{\prime}=\beta M \mathbf{v}+\frac{1}{n}(1-\beta) \mathbf{e}=\beta M \mathbf{v}+(1-\beta)\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)^{T} \tag{5}
\end{equation*}
$$

to obtain a new vector \mathbf{v}^{\prime} from the actual one \mathbf{v}

Spider Traps: Taxation

- Taxation: In each matrix-vector multiplication iteration, instead of just computing $\mathbf{v}^{\prime}=M \mathbf{v}$, compute

$$
\mathbf{v}^{\prime}=\beta M \mathbf{v}+(1-\beta)\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)^{T}
$$

to obtain a new vector \mathbf{v}^{\prime} from the actual one \mathbf{v}

- Interpretation:
- With probability β, the surfer follows an out-link
- With probability $1-\beta$, the surfer get teleported to a random page
- In dead ends, surfer disappears with probability β
- So if there are dead ends, sum of entries in v^{\prime} less than one So remove dead ends first

Spider Traps

$$
\mathbf{v}^{\prime}=\left[\begin{array}{cccc}
0 & 2 / 5 & 0 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 4 / 5 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right] \mathbf{v}+\left[\begin{array}{l}
1 / 20 \\
1 / 20 \\
1 / 20 \\
1 / 20
\end{array}\right]
$$

Iteration with taxation, with spider trap (third column)
Adopted from mmds.org
$\left[\begin{array}{l}1 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right],\left[\begin{array}{r}9 / 60 \\ 13 / 60 \\ 25 / 60 \\ 13 / 60\end{array}\right],\left[\begin{array}{r}41 / 300 \\ 53 / 300 \\ 153 / 300 \\ 53 / 300\end{array}\right],\left[\begin{array}{r}543 / 4500 \\ 707 / 4500 \\ 2543 / 4500 \\ 707 / 4500\end{array}\right], \ldots,\left[\begin{array}{l}15 / 148 \\ 19 / 148 \\ 95 / 148 \\ 19 / 148\end{array}\right]$

Corresponding limiting distribution
Adopted from mmds.org

PageRank: Efficient Computation

- PageRank virtually is matrix-vector multiplication
- Consider MapReduce techniques (originally motivated by PageRank)
- Caveats, however:
- Transition matrix M is very sparse; consider appropriate representation of M
- To reduce communication cost, use combiners
- Earlier striping technique not sufficient
- So, additional techniques necessary:
see https://mmds.org, section 5.2

Topic-Sensitive PageRank

Topic-Sensitive PageRank: Motivation

- Different people have different interests, but ...
- ... different interests are expressed by identical terms
- E.g. jaguar may refer to animal, automobile, operating system, game console
- Ideally: Each user has private PageRank vector that measures individual importance of pages
- But: It is not feasible to store a vector of length many billions for one billion users

Topic-Sensitive PageRank: Basic Idea

- Identify a (rather small) number of topics
- Compute topic specific PageRank vectors
- Store topic vectors ...
- ... instead of individual user vectors
- There are much less topic vectors
- Example for useful topics: See https://www.curlie.org/ (new) or https://www.dmoz-odp.org for top-level categories
- Assign users to (weighted combination of) topic vectors
- Drawback: Looses accuracy
- Benefit: Saves massive amounts of space

Topic-Sensitive PageRank: Computation

Idea: Biased Random Walks

- Simulate random surfers that are to prefer pages adhering to particular topics
- Random surfers start at approved topic-specific pages only
- When surfing, they will preferably visit pages linked from topic-specific pages
- Such pages are likely to deal with topic as well
- When being re-introduced (to avoid dead ends, spider traps), surfers again start at approved pages

Topic-Sensitive Pagerank: Definition

- Let S be the teleport set, i.e. the pages that are approvedly topic-specific
- Let $n, \mathbf{v}, \mathbf{v}^{\prime}, M, \beta$ be as before
- Let $\mathbf{e}_{S} \in\{0,1\}^{n}$ be a bit vector of length n such that

$$
\mathbf{e}_{S}[i]= \begin{cases}1 & \text { if } i \text {-th page belongs to } S \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Definition [Topic-Sensitive PageRank]
The topic-sensitive PageRank for S is the limit of the iteration

$$
\begin{equation*}
\mathbf{v}^{\prime}=\beta M \mathbf{v}+(1-\beta) \frac{\mathbf{e}_{S}}{|S|} \tag{7}
\end{equation*}
$$

where $|S|$ is the cardinality (size) of S.

Topic-Sensitive PageRank: Example

Example web graph
Adopted from mmds.org

$$
\beta M=\left[\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right]
$$

Corresponding weighted web transition matrix

Topic-Sensitive PageRank: Example II

$$
\mathbf{v}^{\prime}=\left[\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right] \mathbf{v}+\left[\begin{array}{c}
0 \\
1 / 10 \\
0 \\
1 / 10
\end{array}\right]
$$

Topic sensitive PageRank computation iteration for teleport set $\{B, D\}$
Adopted from mmds.org

$$
\left[\begin{array}{l}
0 / 2 \\
1 / 2 \\
0 / 2 \\
1 / 2
\end{array}\right],\left[\begin{array}{l}
2 / 10 \\
3 / 10 \\
2 / 10 \\
3 / 10
\end{array}\right],\left[\begin{array}{l}
42 / 150 \\
41 / 150 \\
26 / 150 \\
41 / 150
\end{array}\right],\left[\begin{array}{l}
62 / 250 \\
71 / 250 \\
46 / 250 \\
71 / 250
\end{array}\right], \ldots,\left[\begin{array}{l}
54 / 210 \\
59 / 210 \\
38 / 210 \\
59 / 210
\end{array}\right]
$$

Corresponding limiting distribution
Adopted from mmds.org

Topic-Sensitive PageRank: Practical Considerations

- Pick an appropriate set of topics
- For each topic selected, determine teleport set
- Classifying documents by topic
- Has been studied in great detail
- Topics are characterized by words relating to topic
- Such words appear surprisingly often in topic-specific pages
- Determine such words from pages known to relate to topic beforehand
- Remember the TF.IDF measure (first lecture)

Topic-Sensitive PageRank: Practical Considerations

- When confronted with search query, decide on related topics
- Determining user-specific topics:
- Allow user to choose from menu
- Infer topics from words appearing in recent queries
- Infer topics from information on user (bookmarks, stated interests in social media,...)
- Use corresponding topic-sensitive PageRank vectors for ranking responses

Materials / Outlook

- See Mining of Massive Datasets, chapters 5.1; 5.3-5.5
- As usual, see http://www.mmds.org/ in general for further resources
- Next lecture: "Frequent Itemsets I"
- See Mining of Massive Datasets chapter 6.1, 6.2, 6.3.1, 6.4.1, 6.4.2

