Link Analysis I

Alexander Schönhuth

Bielefeld University June 2, 2022

TODAY

Overview

- PageRank: Introduction, Definition
- ► PageRank Reality: Structure of the Web
- ► Topic-Sensitive PageRank: Classify Pages by Topics

Learning Goals: Understand these topics and get familiarized

PageRank Introduction

(ロ)

PAGERANK: OVERVIEW

- Motivation of PageRank definition: history of search engines
- Concept of *random surfers* foundation of PageRank's effectiveness
- *Taxation* ("recycling of random surfers") allows to deal with problematic web structures

HISTORY: EARLY SEARCH ENGINES

► Early search engines

- Crawl the (entire) web
- ► List all terms encountered in an *inverted index*
- An inverted index is a data structure that, given a term, provides pointers to all places where term occurs
- ► On a *search query* (a list of terms)
 - pages with those terms are extracted from the index
 - ranked according to use of terms within pages
 - E.g. the term appearing in the header renders page more important
 - or the term appearing very often

TERM SPAM

► *Spammers* exploited this to their advantage

► Simple strategy:

- Add terms thousands of times to own webpages
- Terms can be made hidden by using background color
- So pages are listed in searches that do not relate to page contents
- Example: add term "movie" 1000 times to page that advertizes shirts

► Alternative strategy:

- Carry out web search on term
- Copy-paste highest ranked page into own page
- Upon new search on term, own page will be listed high up
- Corresponding techniques are referred to as *term spam*

PAGERANK'S MOTIVATION: FIGHTING TERM SPAM

IDEA:

- ► Simulate *random web surfers*
 - ► They start at random pages
 - They randomly follow web links leaving the page
 - Iterate this procedure sufficiently many times
 - Eventually, they gather at "important" pages
- Judge page also by contents of surrounding pages
 - Difficult to add terms to pages not owned by spammer

PAGERANK'S MOTIVATION: FIGHTING TERM SPAM

JUSTIFICATION

- Ranking web pages by number of in-links does not work
 - Spammers create "spam farms" of dummy pages all linking to one page
- ▶ *But*, spammers' pages do not have in-links from elsewhere
- Random surfers do not wind up at spammers' pages
- ► (Non-spammer) page owners place links to pages they find helpful
- Random surfers indicate which pages are likely to visit
 Users are more likely to visit useful pages

- PageRank is a function that assigns a real number to each (accessible) web page
- ► *Intuition:* The higher the PageRank, the more important the page
- ► There is not one fixed algorithm for computing PageRank
- There are many variations, each of which caters to particular issue

• Consider the web as a directed graph

- Nodes are web pages
- Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages

Adopted from mmds.org

Random walking a web with four pages

Adopted from mmds.org

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- ► For example, a *random surfer* starts at node *A*
- ► Walks to *B*, *C*, *D* each with probability 1/3
- ► So has probability 0 to be at *A* after first step

Random walking a web with four pages

Adopted from mmds.org

► *Random surfer* at *B*, for example, in next step

- is at A, D each with probability 1/2
- ▶ is at *B*, *C* with probability 0

WEB TRANSITION MATRIX: DEFINITION

DEFINITION [WEB TRANSITION MATRIX]:

- Let *n* be the number of pages in the web
- ► The *transition matrix* $M = (m_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ has *n* rows and columns
- ► For each $(i, j) \in \{1, ..., n\} \times \{1, ..., n\}$
 - *m*_{ij} = 1/*k*, if page *j* has *k* arcs out, of which one leads to page *i m*_{ii} = 0 otherwise

$$M = \begin{bmatrix} 0 & 1/2 & 1 & 0\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web from slides before

Adopted from mmds.org

PAGERANK FUNCTION: DEFINITION

DEFINITION [PAGERANK FUNCTION]:

- Let *n* be the number of pages in the web
- Let p^t_i, i = 1, ..., n be the probability that the random surfer is at page i after t steps
- The *PageRank function* for $t \ge 0$ is defined to be the vector

$$p^t = (p_1^t, p_2^t, ..., p_n^t) \in [0, 1]^n$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

PAGERANK FUNCTION: INTERPRETATION

- Usually, $p^0 = (1/n, ...1/n)$ for each i = 1, ..., n
- So before the first iteration, the random surfer is at each page with equal probability
- The probability to be at page *i* in step *t* + 1 is the sum of probabilities to be at page *j* in step *t* times the probability to move from page *j* to *i*
- That is, $p_i^{t+1} = \sum_{j=1}^n m_{ij} p_j^t$ for all *i*, *t*, or, in other words

$$p^{t+1} = Mp^t \quad \text{for all } t \ge 0 \tag{1}$$

 So, applying the web transition matrix to a PageRank function yields another one

PAGERANK FUNCTION: MARKOV PROCESSES

$$p^{t+1} = Mp^t$$
 for all $t \ge 0$

- This relates to the theory of *Markov processes*
- Given that the web graph is strongly connected
 - That is: one can reach any node from any other node
 - ▶ In particular, there are no *dead ends*, nodes with no arcs out
- it is known that the surfer reaches a *limiting distribution* p
 , characterized by

$$M\bar{p} = \bar{p} \tag{2}$$

PAGERANK FUNCTION: MARKOV PROCESSES

$$M\bar{p}=\bar{p}$$

► Further, because *M* is *stochastic* (= columns each add up to one)

- \bar{p} is the *principal eigenvector*, which is
- the eigenvector associated with the largest eigenvalue, which is one
- \bar{p}_i is the probability that the surfer is at page *i* after a long time
- Principal eigenvector of *M* expresses where the surfer will end up
- *Reasoning:* The greater \bar{p}_i , the more important page *i*

 p_i^{+} is page rank of page i

PAGERANK FUNCTION: COMPUTATION

$$M\bar{p}=\bar{p}$$

It holds that

$$M^{t}p^{0} \xrightarrow[t \to \infty]{} \bar{p} \qquad (3)$$

$$p^{0} \rightarrow Mp^{0} = p^{1} \rightarrow Mp^{1} = p^{2} \rightarrow \dots$$

- So, for *computing* p, apply iterative matrix-vector multiplication until (approximate) convergence
- *Example:* Iterative application of transition matrix from above

$$\begin{bmatrix} 1/4\\ 1/4\\ 1/4\\ 1/4\\ 1/4 \end{bmatrix}, \begin{bmatrix} 9/24\\ 5/24\\ 5/24\\ 5/24 \end{bmatrix}, \begin{bmatrix} 15/48\\ 11/48\\ 11/48\\ 11/48 \end{bmatrix}, \begin{bmatrix} 11/32\\ 7/32\\ 7/32\\ 7/32 \end{bmatrix}, \dots, \begin{bmatrix} 3/9\\ 2/9\\ 2/9\\ 2/9 \end{bmatrix}$$

Convergence to limiting distribution for four-node web graph

Adopted from mmds.org

PAGERANK FUNCTION: COMPUTATION

$$M\bar{p}=\bar{p}$$

► It holds that

$$M^t p_0 \xrightarrow[t \to \infty]{} \bar{p}$$
 (4)

- So, for *computing* p, apply iterative matrix-vector multiplication until (approximate) convergence
- ► In practice, working real web graphs
 - ► 50-75 iterations do just fine
 - For *efficient computation*, recall MapReduce based matrix-vector multiplication techniques

PageRank Reality Dead Ends and Spider Traps

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

STRUCTURE OF THE WEB

Bowtie picture of the web

Adopted from mmds.org

WEB BOWTIE: SUMMARY

- Strongly connected component (SCC): core of the web
- ► In-component (IC):
 - One can reach SCC from IC
 - but not return to IC once left
- ► Out-component (OC):
 - Can be reached from SCC
 - but no longer be left
- ► Tendrils:
 - ► *First type:* reachable from IC, but can no longer be left
 - Second type: can reach OC, but cannot be returned to
- ► Tubes:
 - Can be reached from IC
 - Can only reach OC
- Isolated components are not reachable from and cannot reach other components

BOWTIE AND MARKOV CHAINS

Issue: Limiting Distribution

- Random surfers will inevitably wind up in out-component
- Limiting distribution has probability 0 on IC and SCC

No page in IC or SCC of importance

PageRank Modification

- Avoid *dead ends*, single pages with no outlinks
- Avoid *spider traps*, sets of pages without dead ends, but no arcs out
- ► Solution: Taxation
 - Assume random surfer has small probability to leave the web
 - Instead, new surfer starts at random node of the web

Dead Ends

Web graph with dead end (node C) Adopted from mmds.org

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ▶ Dead end = columns of all zeroes in the web transition matrix M
- ► *M* then is *substochastic* (= column sums at most 1)
- $M^i v$ yields vector with zeroes for certain components
- Dead ends drain out the web
- UNIVERSITÄ BIELEFELD

DEAD ENDS

$$M = \begin{bmatrix} 0 & 1/2 & 0 & 0\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web with dead end (node C)

Adopted from mmds.org

$$\begin{bmatrix} 1/4\\ 1/4\\ 1/4\\ 1/4\\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24\\ 5/24\\ 5/24\\ 5/24\\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48\\ 7/48\\ 7/48\\ 7/48\\ 7/48\\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288\\ 31/288\\ 31/288\\ 31/288\\ 31/288\\ \end{bmatrix}, \dots, \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

AVOIDING DEAD ENDS

Dropping dead ends: Procedure

- ► Drop dead ends from graph, and corresponding edges
- Dropping dead ends may create more dead ends
- Keep dropping dead ends iteratively

Dropping dead ends: Consequences

- Removes parts of out-component, tendrils and tubes
- Leaves SCC and in-component

AVOIDING DEAD ENDS

Graph before (left) and after iterative removal of dead ends (right)

DROPPING DEAD ENDS: PAGERANK COMPUTATION

- 1. After iterative removal of dead ends, compute PageRank for remaining core nodes
- 2. Re-introduce nodes iteratively, in reverse order relative to their removal
- 3. PageRank for re-introduced node: sum over all predecessors, PageRank of predecessor *p* divided by the number of successors of *p*

DEAD ENDS

$$M = \left[\begin{array}{rrrr} 0 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{array} \right]$$

Transition matrix after removal of dead ends

$$\begin{bmatrix} 1/3\\1/3\\1/3\end{bmatrix}, \begin{bmatrix} 1/6\\3/6\\2/6\end{bmatrix}, \begin{bmatrix} 3/12\\5/12\\4/12\end{bmatrix}, \begin{bmatrix} 5/24\\11/24\\8/24\end{bmatrix}, \dots, \begin{bmatrix} 2/9\\4/9\\3/9\end{bmatrix}$$

PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9

Adopted from mmds.org

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

DEAD ENDS: PAGERANK COMPUTATION

- 1. From core: PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9
- 2. Re-introduce node C first: PageRank(C) = $1/3 \times PageRank(A) + 1/2 \times PageRank(D) = \frac{13}{54}$
- 3. Then re-introduce node E: PageRank(*E*) = $1 \times PageRank(C) = \frac{13}{54}$

SPIDER TRAPS

Web graph with spider trap (set containing single node C) Adopted from mmds.org

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► (Small) group of nodes with no dead ends, but no arcs out
- Can appear intentionally or unintentionally
- "Soak up" all PageRank

SPIDER TRAPS

$$M = \begin{bmatrix} 0 & 1/2 & 0 & 0\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 0 & 1 & 1/2\\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web with single node spider trap (third column)

Adopted from mmds.org

$$\begin{bmatrix} 1/4\\ 1/4\\ 1/4\\ 1/4\\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24\\ 5/24\\ 11/24\\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48\\ 7/48\\ 29/48\\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288\\ 31/288\\ 205/288\\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

(ロ)

SPIDER TRAPS: TAXATION

Allow the random surfer to get *teleported* to a random page

► Notation:

- Let *n* be the total number of web pages
- Let $\mathbf{e} := (1, ..., 1)$ be the vector of length *n* with all entries one
- Let β be a small constant; usually $0.8 \le \beta \le 0.9$

Taxation: In each matrix-vector multiplication iteration, instead of just computing v' = Mv, compute

$$\mathbf{v}' = \beta M \mathbf{v} + \frac{1}{n} (1 - \beta) \mathbf{e} = \beta M \mathbf{v} + (1 - \beta) (\frac{1}{n}, ..., \frac{1}{n})^T$$
(5)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

to obtain a new vector \mathbf{v}' from the actual one \mathbf{v}

SPIDER TRAPS: TAXATION

Taxation: In each matrix-vector multiplication iteration, instead of just computing v' = Mv, compute

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta)(\frac{1}{n}, ..., \frac{1}{n})^T$$

to obtain a new vector \mathbf{v}' from the actual one \mathbf{v}

► Interpretation:

- With probability β , the surfer follows an out-link
- With probability 1β , the surfer get teleported to a random page
- In dead ends, surfer disappears with probability β
- So if there are dead ends, sum of entries in v' less than one
 So remove dead ends first

SPIDER TRAPS

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 0 & 0\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 0 & 4/5 & 2/5\\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 1/20\\ 1/20\\ 1/20\\ 1/20 \end{bmatrix}$$

Iteration with taxation, with spider trap (third column)

Adopted from mmds.org

[1/4]		9/60		41/300		543/4500		[15/148]
1/4		13/60		53/300		707/4500		19/148
1/4	,	25/60	,	153/300	,	2543/4500	,,	95/148
1/4		13/60		53/300		707/4500		19/148

Corresponding limiting distribution

Adopted from mmds.org

PAGERANK: EFFICIENT COMPUTATION

PageRank virtually is matrix-vector multiplication

- Consider MapReduce techniques (originally motivated by PageRank)
- ► *Caveats*, however:
 - Transition matrix *M* is very sparse; consider appropriate representation of *M*
 - ► To reduce communication cost, use combiners
 - Earlier striping technique not sufficient
- ► So, additional techniques necessary:

see https://mmds.org, section 5.2

Topic-Sensitive PageRank

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

TOPIC-SENSITIVE PAGERANK: MOTIVATION

- Different people have different interests, but ...
- ▶ ... different interests are expressed by identical terms
 - E.g. jaguar may refer to animal, automobile, operating system, game console
- Ideally: Each user has private PageRank vector that measures individual importance of pages
- But: It is not feasible to store a vector of length many billions for one billion users

TOPIC-SENSITIVE PAGERANK: BASIC IDEA

- ► Identify a (rather small) number of topics
- Compute topic specific PageRank vectors
 - Store topic vectors ...
 - ... instead of individual user vectors
 - There are much less topic vectors
 - Example for useful topics: See https://www.curlie.org/ (new) or https://www.dmoz-odp.org for top-level categories
- Assign users to (weighted combination of) topic vectors
- ► Drawback: Looses accuracy
- ► *Benefit:* Saves massive amounts of space

TOPIC-SENSITIVE PAGERANK: COMPUTATION

Idea: Biased Random Walks

- Simulate random surfers that are to prefer pages adhering to particular topics
- Random surfers start at approved topic-specific pages only
- When surfing, they will preferably visit pages linked from topic-specific pages
- Such pages are likely to deal with topic as well
- When being re-introduced (to avoid dead ends, spider traps), surfers again start at approved pages

TOPIC-SENSITIVE PAGERANK: DEFINITION

- Let S be the *teleport set*, i.e. the pages that are approvedly topic-specific
- Let $n, \mathbf{v}, \mathbf{v}', M, \beta$ be as before
- Let $\mathbf{e}_S \in \{0,1\}^n$ be a bit vector of length n such that

$$\mathbf{e}_{S}[i] = \begin{cases} 1 & \text{if } i\text{-th page belongs to } S \\ 0 & \text{otherwise} \end{cases}$$

DEFINITION [TOPIC-SENSITIVE PAGERANK] The *topic-sensitive PageRank for S* is the limit of the iteration

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta) \frac{\mathbf{e}_S}{|S|} \tag{7}$$

(6)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

where |S| is the cardinality (size) of *S*.

TOPIC-SENSITIVE PAGERANK: EXAMPLE

Example web graph Adopted from mmds.org

$$\beta M = \begin{bmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix}$$

Corresponding weighted web transition matrix

Adopted from mmds.org

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TOPIC-SENSITIVE PAGERANK: EXAMPLE II

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 0 \\ 1/10 \\ 0 \\ 1/10 \end{bmatrix}$$

Topic sensitive PageRank computation iteration for teleport set $\{B,D\}$

Adopted from mmds.org

$\begin{bmatrix} 0/2 \\ 1/2 \end{bmatrix}$		2/10 3/10		$\begin{bmatrix} 42/150 \\ 41/150 \end{bmatrix}$		$\begin{bmatrix} 62/250 \\ 71/250 \end{bmatrix}$		$\left[\begin{array}{c} 54/210\\ 59/210 \end{array} \right]$
$\frac{1/2}{0/2}$,	2/10	,	26/150	,	46/250	,,	38/210
$\lfloor 1/2 \rfloor$		3/10		41/150		71/250		59/210

Corresponding limiting distribution

Adopted from mmds.org

TOPIC-SENSITIVE PAGERANK: PRACTICAL CONSIDERATIONS

- Pick an appropriate set of topics
- ► For each topic selected, determine teleport set
- ► Classifying documents by topic
 - Has been studied in great detail
 - Topics are characterized by words relating to topic
 - Such words appear surprisingly often in topic-specific pages
 - Determine such words from pages known to relate to topic beforehand
 - Remember the TF.IDF measure (first lecture)

TOPIC-SENSITIVE PAGERANK: PRACTICAL CONSIDERATIONS

- ► When confronted with search query, decide on related topics
- ► Determining user-specific topics:
 - Allow user to choose from menu
 - Infer topics from words appearing in recent queries
 - Infer topics from information on user (bookmarks, stated interests in social media,...)
- Use corresponding topic-sensitive PageRank vectors for ranking responses

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapters 5.1; 5.3 5.5
- As usual, see http://www.mmds.org/ in general for further resources
- ► Next lecture: "Frequent Itemsets I"
 - See *Mining of Massive Datasets* chapter 6.1, 6.2, 6.3.1, 6.4.1, 6.4.2

