## Mining Data Streams II

Alexander Schönhuth



Bielefeld University May 19, 2022

## **TODAY**

## Mining Data Streams II: Overview

- Counting Ones in a Window:
   Datar-Gionis-Indyk-Motwani algorithm
- ► Decaying Windows

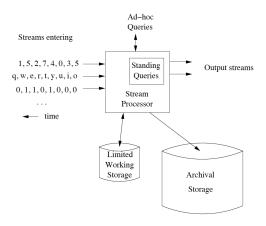
Learning Goals: Understand these topics and get familiarized



## Counting Ones in a Window The Datar-Gionis-Indyk-Motwani Algorithm



## DATA STREAM MANAGEMENT SYSTEM



#### A data stream management system

Adopted from mmds.org



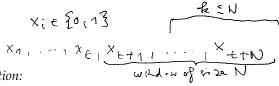
## DATA STREAM QUERIES

#### **Issues**

- Streams deliver elements rapidly: need to act quickly
- Thus, data to work on should fit in main memory
- ► New techniques required:
- Compute approximate, not exact answers



## COUNTING ONES IN WINDOW: PROBLEM



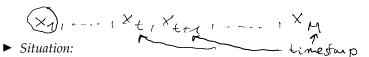
- ► *Situation*:
  - ► Suppose we have a window of length *N* on a binary stream
  - Query: "how many ones are there in the last  $k \le N$  bits?"
  - We cannot afford to store entire window
  - Approximate algorithms required
- ► Present solution for binary streams first
- Discuss extension for summing numbers (from a stream of numbers) thereafter



## THE COST OF EXACT COUNTS

- ▶ One needs to store N bits to answer count-one-queries for arbitrary  $k \le N$ :
  - ► Assume one could use less than *N* bits
  - ► We need 2<sup>N</sup> different representations to represent all possible 2<sup>N</sup> bit strings of length N
  - Since we use less than N bits, there are two different bit strings  $w \neq x$ , for which we use the same representation
  - ightharpoonup Let k be the first bit from the right where w and x disagree
  - ► Example:
    - For w = 0101, x = 1010, we have k = 1
    - For w = 1001, x = 0101, we have k = 3
  - ► So the counts of ones in the window of length *k* for *w* and *x* differ
  - ▶ But because we use identical representations for *w* and *x*, we will output the same count
  - ▶ This proves that one needs the full *N* bits to represent bit strings for exact count-one-queries.





- ► We consider a binary stream: elements are *bits*
- ► Let each element of the stream have a *timestamp*
- ► The first, *leftmost* element has timestamp 1, the second leftmost has timestamp 2, and so on
- ► *Goal:* We like to count the ones among the *N* most recent (rightmost) elements/bits
- ► *Space requirements:*

- [1006,1001,...,106,1,
- ► Storing timestamps modulo *N*, and
- marking rightmost timestamp as most recent
- ightharpoonup allows to store positions of individual bits using  $\log_2 N$  bits





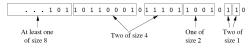
- ► *Algorithm:* Divide window into *buckets*, contiguous bit substrings
- ▶ *Bucket Representation:* For identifying buckets, we store
  - ► The timestamp of its right end, and
  - ► The *size* of the bucket, as the number of 1's in the bucket
  - ► The size is supposed to be a power of 2
- ► Bucket Space Requirements:
  - ▶ Timestamp requires  $\log_2 N$  bits
  - ► Size is  $2^j$ , hence requires  $\log \log_2 N$  bits (by storing  $\log_2 j$  bits)
  - ightharpoonup Requires  $O(\log N)$  bits overall

Storing budet: [Grastoup, 2] log 697 where ej = N

j \leq log\_N

## Datar-Gionis-Indyk-Motwani Rules

. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0



## Bit stream divided into buckets following DGIM rules From mmds.org

- ▶ Right end always is a 1
- ► Every 1 of the window is in some bucket
- Buckets do not overlap
- ► All sizes must be a power of 2
- ► For each possible size, there are either one or two buckets
- ► Size of buckets cannot decrease when moving



#### Key Ideas / Considerations

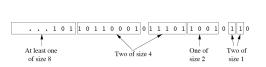
- ► The number of buckets representing a window must be small
- ► Estimate the number of 1's in the last *k* bits (for any *k*) with an error of no more than 50%
- ► How to maintain the DGIM Bucket Rules on new bits arriving?



#### Storage Requirements

- ► Each bucket can be represented using  $O(\log N)$  bits
- ▶ Let  $2^j$  be size of largest bucket:  $2^j < N$  implies  $j \le \log_2 N$
- ▶ So there are at most 2 buckets of sizes  $2^{j}$ ,  $j = \log_2 N, ..., 1$
- ▶ This means that there are  $O(\log N)$  buckets
- ► Each bucket being represented by  $O(\log N)$  bits requires  $O(\log^2 N)$  space overall





. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0

## Bit stream divided into buckets following DGIM rules

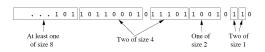
From mmds.org

#### Answering Queries

- ▶ Let  $1 \le k \le N$ : how many 1's are among the last k bits?
- ► Answer:
  - ► Find leftmost (= with earliest timestamp) bucket *b* containing some of last *k* bits
  - ► *Estimate*: Sum of sizes of buckets right of *b* plus half the size of *b*



. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0



#### Bit stream divided into buckets following DGIM rules

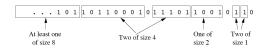
From mmds.org

#### Example

- ► Let k = 10: how many 1's are among 0110010110?
- ► Let *t* be timestamp of rightmost bit
- ▶ Two buckets with one 1 each, having timestamps t 1, t 2 are fully included in k righmost bits
- ▶ Bucket of size 2 with timestamp t 4 is also included
- ▶ Bucket of size 4 with timestamp t 8 is only partially included
- UNIVERSITÄT Estimate:  $1+1+2+(1/2\times 4)=6$ , one more than true count BIGLEFELD

## **DGIM: ERROR OF ESTIMATE**

$$\frac{c-2^{i-1}}{c} = 1 - \frac{2^{i-1}}{c} \times 0.5$$



#### Bit stream divided into buckets following DGIM rules

From mmds.org

#### Case 1: estimate is less than c

- ▶ Let *c* be true count; let leftmost bucket *b* be of size  $2^{j}$
- ► Worst case: all 1's in b are among k most recent bits
- ► So, estimate is lower by  $1/2 \times 2^j = 2^{j-1}$  than *c*
- ▶ Because  $c \ge 2^j$ , error is at most half of c

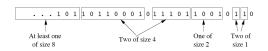
estrate

true cont 8 for true r 4 for estrude



## DGIM: Error of Estimate

. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0



#### Bit stream divided into buckets following DGIM rules

From mmds.org

[1011011101]

#### Case 2: estimate is larger than c

- Let c be true count; let leftmost bucket b be of size  $2^{j}$
- ► *Worst case*: only rightmost bit of *b* is among *k* most recent bits, and
- ▶ There is only one bucket for each of sizes  $2^{j-1}$ , ..., 1
- ► That yields  $c = 1 + 2^{j-1} + ... + 1 = 1 + 2^j 1 = 2^j$
- Estimate is  $2^{j-1} + 2^{j-1} + ... + 1 = 2^{j-1} + 2^j 1$ , so
- Error  $\frac{2^{j-1}+2^j-1}{2^j}$  is no greater than 50% of true count



1 2' = 2 n+1-1



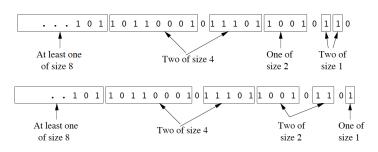
## MAINTAINING DGIM RULES

#### Upon a new bit with timestamp *t* having arrived:

- ► Check timestamp *s* of leftmost bucket *b*:
  - ▶ if  $s \le t N$ , drop b from list of buckets
- ► If the new bit is 0, do nothing
- ► If the new bit is 1, do
  - ► Create new bucket with timestamp *t* and size 1
  - On increasing size, starting with size 1, while there are three buckets of the same size, do
    - keep the rightmost bucket of that size as is
    - ▶ join the two left buckets into one of double the size
    - where the timestamp is that of the rightmost bit
  - ► For example: joining the two left of the three buckets of size 1 into a bucket of size 2 may create a third bucket of size 2, and so on
- ▶ *Runtime*: Need to look at  $O(\log N)$  buckets, joining is constant time, so processing new bit requires  $O(\log N)$  time overall



. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0



Bit stream divided into buckets following DGIM rules (top), with new 1 arriving (bottom)

From mmds.org



## DGIM ALGORITHM: REDUCING THE ERROR

- ▶ For some r > 2, allow either r or r 1 buckets of the same size
- Allow this for all but size 1 and largest size, whose numbers may be any of 1,...,r
- ► Compute estimate as before
- Extend maintaining the DGIM Bucket Rules in the obvious way
- ► *Recall:* largest error  $\frac{2^{j-1}+2^j-1}{2^j}$  was made when only one 1 from leftmost bucket b was within window
- ► New error:
  - ► True count is at most  $1 + (r-1)(2^{j-1} + ... + 1) = 1 + (r-1)(2^{j} 1)$
  - ► Estimate is  $2^{j-1} + (r-1)(2^j-1)$ , difference between estimate and true count is  $2^{j-1} 1$ , so fractional error is

$$\frac{2^{j-1}-1}{1+(r-1)(2^j-1)}$$

- which is upper bounded by 1/2(r-1)
- Picking large *r* can limit error to any  $\epsilon > 0$



## **DGIM ALGORITHM: EXTENSIONS**

- DGIM can be extended to integers instead of bits
- ▶ Question is to estimate the sum of last k ≤ N integers from a window of N integers overall
- ► However, DGIM cannot be extended to streams containing negative integers
- ▶ Consider case of integers in range of  $\mathcal{Z}$  to  $\mathcal{Z}^n$ , so represented by m bits
- ► Solution: M=3: 010, 100, 011, 001, 110, 111, ---
  - Treat each bit of integers as separate stream
  - Apply DGIM algorithm to each of m streams, yielding estimate  $c_i$  for i-th stream
  - ► Overall estimate:

• If error is at most  $\epsilon$  for all i, overall error is also at most  $\epsilon$ 



# Most Common Elements Decaying Windows



- ► *Stream*: Movie tickets purchased all over the world
- ► *Goal:* Listing currently most "popular" movies
- ► *Currently popular:* 
  - Movie that sold plenty of tickets years ago not to be listed
  - ightharpoonup Movie that sold 2n tickets last week, for large n, currently popular
  - ▶ Movie that sold *n* tickets in last 10 weeks is even more popular
  - ► How to grasp that idea?



- ► *Stream*: Movie tickets purchased all over the world
- Goal: Listing currently most "popular" movies
- ► *Possible solution:* 
  - One bit stream for each movie
  - ► The i-th bit in a movie stream is 1 if the i-th ticket was for that movie
  - ▶ Pick window of size *N*, where *N* is to reflect tickets to be recent
  - ► Estimate number of ones in each stream
    - Use Datar-Gionis-Indyk-Motwani (DGIM) algorithm, for example
    - ► Estimates number of tickets sold for each movie
  - ► Rank movies by the estimated counts

```
M1: 0001 ....
M2: 1000 ....
M3: 0110 ....
```



- ► *Possible solution, summary:* 
  - ▶ One bit stream for each movie
  - ▶ i-th bit in a movie stream is 1 iff i-th ticket was for that movie
  - ► Count number of ones in each stream...
  - ... counts tickets for each movie
  - ► Rank movies by ticket counts
- Works for movies, because there only thousands of movies
- ► Drawback:
  - Does not work for items at Amazon or tweets per Twitter-user
  - too many items or users



- ► *Stream*: Movie tickets purchased all over the world
- ► *Goal:* Listing currently most "popular" movies
- ► *Alternative approach:* 
  - ► Do not count ones in fixed-size window
  - ► Rather, compute "smooth aggregation" of all ones in stream
  - Smooth: use weights to rate stream elements in terms of recentness
  - ► The further back in the stream, the less weight given

$$w_1, \ldots, w_{\pm}, \ldots, \pm \omega_M$$
 $w_1 \leq w_2 \leq \ldots \leq w_M$ 



## **EXPONENTIALLY DECAYING WINDOW: DEFINITION**

## **DEFINITION** [EXPONENTIALLY DECAYING WINDOW]:

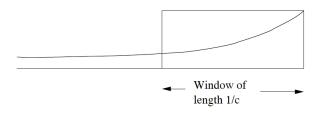
- ▶ Let  $a_1, a_2, ..., a_t$  be a stream, with  $a_t$  most recent element
- ► Let *c* be small constant, e.g.  $c \in [10^{-9}, 10^{-6}]$

The *exponentially decaying window* for the stream is defined to be the sum

$$\sum_{i=0}^{t-1} a_{t-i} (1-c)^{i}$$
weight is  $(1-c)^{i}$ 
the furble to the left,
the greater  $i$ 



## **EXPONENTIALLY DECAYING WINDOW: DEFINITION**



Decaying window and fixed-length window of equal weight
From mmds.org

- ► Decaying window puts weight  $(1-c)^i$  on (t-i)-th element
- ▶ A window of length 1/c puts equal weight 1 on the first 1/c elements
- ▶ Both principles distribute the same weight to stream elements overall



## UPDATING EXPONENTIALLY DECAYING WINDOWS

Upon arrival of a new element  $a_{t+1}$ , one updates the exponentially decaying window  $\sum_{i=0}^{t-1} a_{t-i} (1-c)^i$  by

1. multiplying the current window by (1 - c), yielding

$$\sum_{i=0}^{t-1} a_{t-i} (1-c)^{i+1}$$

2. adding  $a_{t+1}$ , yielding

$$\sum_{i=0}^{t-1} a_{t-i} (1-c)^{i+1} + a_{t+1} = \sum_{i=0}^{(t+1)-1} a_{(t+1)-i} (1-c)^{i}$$

## EXPONENTIALLY DECAYING WINDOWS: FINDING MOST POPULAR MOVIES

- ► Most Popular Movies: Idea
  - ► Have a bit stream for each movie, as before
  - Use e.g.  $c = 10^{-9}$  ( $\approx$  sliding window of size  $1/c = 10^9$ )
  - On incoming movie ticket sale, update all decaying windows, as described above
    - First, multiply all decaying windows by 1 c
    - Add 1 for stream of the movie of the ticket; if there is no stream for that movie, create one
    - ▶ Do nothing (add 0) for all other streams
  - ► If any decaying window drops below threshold of 1/2, drop window
  - ▶ Because the sum of all scores is 1/c, there cannot be more than 2/c movies with score of 1/2 or more
  - ightharpoonup So, 2/c is limit on number of movies being tracked at any time
  - ► In practice, there should be much less movies counted
- ► *Therefore*, one can apply the technique also for Amazon items and Twitter-users



## MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 4.6, 4.7
- ► As usual, see http://www.mmds.org/in general for further resources
- ► Next lecture: "Link Analysis I"
  - ► See Mining of Massive Datasets 5.1–5.5

