Map Reduce / Workflow Systems II

Alexander Schönhuth

Bielefeld University
May 5, 2022

Learning Goals Today

- Get to know idea of workflow systems and some examples
- Understand the definition of communication cost
- Understand the definition of wall clock time
- Get to know theory and intuition of complexity theory for MapReduce

Workflow Systems

Workflow Systems: Introduction

- Workflow systems generalize MapReduce
- Just as much as MapReduce:
- They're built on distributed file systems
- They orchestrate large numbers of tasks with only small input provided by the user
- They automatically handle failures
- In addition:
- Single tasks can do other things than just Map or Reduce
- Tasks interact in more complex ways

Workflow Systems: Flow Graph

- A function represents arbitrary functionality within a workflow
- and not just 'Map' or 'Reduce'
- Functions are represented as nodes of the flow graph
- Arcs $a \rightarrow b$ for two functions a, b mean that the output of function a is provided to function b as input
- Note: The same function could be used by many tasks

WORKflow Systems

Figure: More complex workflow than MapReduce

Adopted from mmds.org

Workflow Systems: Acyclic Flow Graph

- It is easier to deal with acyclic flow graphs
- This means that one cannot return to functions
- Blocking Property: tasks only generate output upon completion
- Blocking property easily applicable only in acyclic workflows
- Simple Example of Workflow: Cascades of Map-Reduce jobs
- Output of Map jobs generated only after all Map tasks are completed
- Reduce can work only on complete output anyway

Popular Workflow Systems

- Spark: developed by UC Berkeley
- TensorFlow: Google's system, primarily developed for neural network computations
- Pregel: also by Google, for handling recursive (i.e. cyclic) workflows
- Snakemake: easy-to-use workflow system, inspired by MakeFile logic/functionality

SPARK

- State-of-the-art workflow system:
- Very efficient with failures
- Very efficient in grouping tasks among nodes
- Very efficient in scheduling execution of functions
- Basic concept: Resilient Distributed Dataset (RDD)
- Generalizes key-value pair type of data: RDD is a file of objects of one type
- Distributed: broken into chunks held at different nodes
- Resilient: recoverable from losses of (even all) chunks
- Transformations (steps of functions) turn RDD into others
- Actions turn other data (from surrounding file system) into RDD's and vice versa

Spark: Transformations

Remark: For the following, consider equivalent methods in Python

- Map takes a function as parameter and applies it to every element of an RDD, generating a new one
- Turns one object into exactly another object, but not several ones
- Remember: Map from MapReduce generates several key-value pairs from one object
- Flatmap is like Map from MapReduce, and generalizes it from key-value pairs to general object types (not implemented in Python)
- Filter takes a predicate as input
- Predicate is true or false for elements of RDD
- So RDD is filtered for objects for which predicate applies
- Yields a 'filtered RDD'

Spark: Reduce and Relational Database Operations

- Reduce is an action, and takes as parameter a function that
- applies to two elements of a particular type T
- returns one element of type T
- and is applied repeatedly until a single element remains
- Works for associative and commutative operations
- Many Relational Database Operations are implemented in Spark:
- Process RDD's reflecting tuples of relations
- Examples: Join, GroupByKey

Spark: Implementation Details

- Spark is similar like MapReduce in handling data (chunks are called splits)
- Lazy evaluation allows to apply several transformations consecutively to splits:
- No intermediate formation of entire RDD's
- Contradicts blocking property, because partial output is passed on to new functions
- Resilience (despite lazy evaluation) is maintained by lineages of RDD's
- Beneficial trade-off of more complex recovery of failures versus greater speed overall
- Note that greater speed reduces probability of failures

TENSORFLOW

- Open-source system developed (initially) by Google for machine-learning applications
- Programming interface for writing sequences of steps
- Data are tensors, which are multidimensional matrices
- Power comes from built-in operations applicable to tensors

Recursive Workflows

Examples:

- Calculating fixed-points ($M v=v$ for a matrix M and v) by iterative application of M to v v -> Mv -> $\mathrm{M}^{\wedge} 2 \mathrm{v}->\mathrm{M}^{\wedge} 3 \mathrm{v}->\ldots$ converges to fixed-point
- Gradient descent, e.g. required in TensorFlow for determining optimal sets of parameters for machine learning models
- Lack of blocking property:
- Flow graphs have cycles
- Tasks may provide their output as input to other tasks whose output in turn results in more input to the first task
- So generation of output only when task is done does not work
- Recovery from failures needs to be reorganized

Recursive Workflows: Example

- Directed graph stored as relation $E(X, Y)$, listing arcs from X to Y
- Want to compute relation $P(X, Y)$, listing paths from X to Y
- P is transitive closure of E (see below)
- Algorithm:
- Start: $P(X, Y)=E(X, Y)$

Natural Join: takes (x, z) and (z, y) and generates

- Iteration: Add to P tuples (x, z, y) for all possible z, so result are possibly several tuples ($\mathrm{x}, \mathrm{z} 1, \mathrm{y}$), ($\mathrm{x}, \mathrm{z} 2, \mathrm{y}$)

Project: both ($\mathrm{x}, \mathrm{z} 1, \mathrm{y}$), $(\mathrm{x}, \mathrm{z} 2, \mathrm{y})$ get (x, y)

$$
\begin{equation*}
\pi_{X, Y}(P(X, Z) \bowtie P(Z, Y)) \tag{1}
\end{equation*}
$$

as pairs of nodes X and Y s.t. for some node Z there is path from X to Z and from Z to Y

Transitive Closure: Definition

Definition [TRansitive Closure]:
Let $R(X, Y)$ be a relation.

- $R(X, Y)$ is transitive if $(x, z) \in R$ and $(z, y) \in R$ imply that $(x, y) \in R$ as well
- The transitive closure $\overline{R(X, Y)}$ of $R(X, Y)$ is the smallest set of tuples to be added to $R(X, Y)$ that renders the resulting set of tuples transitive

Example: Transitive Closure

$\mathrm{P}(\mathrm{a}, \mathrm{b})$ corresponds to (a, b)

- n Join tasks, corresponding to buckets of hash function h
- Tuple $P(a, b)$ is assigned to Join tasks $h(a)$ and $h(b)$
- i-th Join tasks receives $P(a, b)$
- Store $P(a, b)$ locally
- If $h(a)=i$ look for tuples $P(x, a)$ and produce $P(x, b)$
- If $h(b)=i$ look for tuples $P(b, y)$ and produce $P(a, y)$

Transitive closure by recursive tasks
locally stored at Join task i: (a, b) and $(x, a)=>$ generate (x, b)
locally stored at Join task i: (a, b) and $(\mathrm{b}, \mathrm{y})=>$ generate (a, y)
Adopted from mmds.org

Recursive Workflows: Example

- m Dup-elim tasks, corresponding to buckets of hash function g
- $P(c, d)$ (as output of Join task) is sent to Dup-elim task $j=g(c, d)$
- Dup-elim task j checks whether $P(c, d)$ was received before
- If yes, $P(c, d)$ is ignored (and not stored)
- If not, $P(c, d)$ is stored locally,
- and sent to Join tasks $h(c)$ and $h(d)$

Transitive closure by recursive tasks
Adopted from mmds.org

Recursive Workflows: Example

- Every Join task has m output files
- Every Dup-elim task has n output files
- Initially, tuples $E(a, b)$ are sent to Dup-elim tasks $g(a, b)$
$E(a, b)$ is just (a, b)

Transitive closure by recursive tasks
Adopted from mmds.org

Recursive Workflows: Failure Handling

- Iterated MapReduce: Application is repeated execution / sequence of MapReduce job(s) ("HaLoop")
- Spark Approach: Lazy evaluation, lineage mechanisms, option to store intermediate results
- Bulk Synchronous Systems: Graph-based model using "periodic checkpointing"

Bulk Synchronous Systems: Pregel

- System views data as graph:
- Nodes (roughly) reflect tasks
- Arcs: from nodes whose output (messages) are input to other nodes
- Supersteps:
- All messages received by any of the nodes from the previous superstep are processed
- All messages generated are sent to their destinations
- Advantage: Sending messages means communication costs, bundling them reduces costs
- Failure Management: Checkpointing entire computation by making copy after each superstep
- May be beneficial to checkpoint periodically after number of supersteps

SNAKEMAKE

- Create reproducible and scalable data analyses
- Workflows described in human readable, Python based language
- Seamlessly scale to server, cluster, grid and cloud environments
- Integrating descriptions of required software, deployable to any execution environment

The Communication-Cost Model

Communication Cost

Situation

- Algorithm implemented by acyclic network of tasks:
- Map tasks feeding Reduce tasks
- Cascade of several MapReduce jobs
- More general workflow structure (e.g. Fig. 1)

Definition [COMmunication Cost]:

- The communication cost of a task is the size of the input it receives
- The communication cost of an algorithm is the sum of the communication costs of its tasks

Communication Cost

Why Communication Cost?

- Computing communication cost is the way to measure the complexity of distributed algorithm
- Neglect time necessary for tasks to execute
- Importance of communication cost:
- Tasks tend to be simple (often linear in size of input)
- Interconnect speed of compute cluster (typically $1 \mathrm{Gbit} / \mathrm{sec}$) slow compared with speed processors execute instructions
- Often there is competition for the interconnect when several nodes are communicating
- Moving data from disk to memory may exceed runtime

Why not Output Size?

- Output often is input to another task anyway
- Output rarely large in comparison with input or intermediate data

Reminder: Natural Join

Natural Join: $R(A, B) \bowtie S(B, C) \quad(\mathrm{a}, \mathrm{b})$ from R and (b, c) from S get $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ in the new relation

- Map: For each tuple $t=(a, b)$ from R, generate key-value pair $(b,(R, a))$. For each tuple (b, c) from S, generate $(b,(S, c))$.
- Reduce: After grouping, each key value b has list of values being either of the form (R, a) or (S, c)
- Construct all pairs of values where first component is like (R, a) and second component is like (S, c), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples (a, b, c) being output

Communication Cost: Natural Join Example

Suppose we are joining $R(A, B) \bowtie S(B, C)$ with R, S of sizes r and s.

- Map: Chunks of files R, S are input to Map tasks communication cost of Map is $r+s$ (in practice mostly disk to memory)
- Reduce: Input to Reduce tasks is all ($r+s$ many) key-value pairs generated by Map tasks communication cost for Reduce is $O(r+s)$
- Output of Reduce could be much larger than $O(r+s)$ (up to $O(r s)$), depending on how many tuples are to be generated for each key b

Communication Cost Example: $R(A, B) \bowtie S(B, C)$

Let sizes of relations R and S be r and s.

Map

- Each chunk of the files holding R and S is fed to one task Communication cost is $r+s$
- Nodes hold chunks already from file distribution step: no internode communication, only disk-to-memory costs
- All Map tasks perform a simple transformation, so only negligible computation cost
- Output about as large as input

Communication Cost Example: $R(A, B) \bowtie S(B, C)$

Let sizes of relations R and S be r and s.

Reduce

- Receives and divides input into tuples from R and S
- For each key, pairs each tuple from R with the ones from S
- Output size can vary: can be larger or smaller than $O(r+s)$
- Many different B-values: output is small
- Few B-values: output much larger
- Output large: computation cost could be much larger than $O(r+s)$
- Often output is further subsequently aggregated at further nodes
Communication cost greater than computation cost

Wall-Clock Time

Definition [Wall-Clock Time]:
The wall-clock time is defined to be the time for the entire parallel algorithm to finish.
Example: Careless reasoning could make one assign all tasks to one node, which minimizes communication cost. But the wall-clock time is (likely to be) at its maximum.

Example: MUltiway Join

Consider computing $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$. For simplicity, let us assume that

- the probability that an R - and and S-tuple agree on B
- the probability that an S - and a T-tuple agree on C are equal. Let p be that probability.

Joining R and S first:

- Communication cost is $O(r+s)$ (see before)
- Size of output is $p r s$
- Hence joining $R \bowtie S$ with T is $O((r+s)+(t+p r s))$

Joining S and T first:

- yields $O((s+t)+(r+p s t))$ by analogous considerations

$R(A, B) \bowtie S(B, C) \bowtie T(C, D)$ In One MApReduce

Let p be the probability that an R - and an S-tuple agree on B, matching the probability for an S - and a T-tuple to agree on C.

- Hash B- and C-values, using functions h and g
- Let b and c be the number of buckets for h and g
- Let k be the number of Reducers; require that $b c=k$
- Each reducer corresponds to a pair of buckets
- Reducer corresponding to bucket pair (i, j) joins tuples

$$
R(u, v), S(v, w), T(w, x) \text { whenever } h(v)=i, g(w)=j
$$

- Hence Map tasks send R - and T-tuples to more than one reducer
- R-tuples $R(u, v)$ go to all reducers $(h(v), y)$ goes to c reducers
- T-tuples $T(w, x)$ go to all reducers $(z, g(w))$ geos to b reducers

Multiway Join: One MapReduce II

> Sixteen reducers for a 3-way join
> Adopted from mmds .org

- $h(v)=2, g(w)=1$
- S-tuple $S(v, w)$ goes to reducer for key $(2,1)$
- R-tuple $R(u, v)$ goes to reducers for keys $(2,0), \ldots,(2,3)$

Multiway Join: One MapReduce III

Communication cost:

- Moving tuples to proper reducers is sum of
- s to send tuples $S(v, w)$ to $(h(v), g(w))$
- $r c$ to send tuples $R(u, v)$ to $(h(v), y)$ for each of the c possible $g(w)=y$
- bt to send tuples $T(w, x)$ to $(z, g(w))$ for each of the b possible $h(b)=z$
- Additional (constant) cost $r+s+t$ to make each tuple input to one of the Map tasks (constant)

Multiway Join: One MapReduce III

Communication cost:

- Goal: Select b and c, subject to $b c=k$, to minimize $s+c r+b t$
- Using Lagrangian multiplier λ yields to solve for
- $r-\lambda b=0$
- $t-\lambda c=0$
- It follows that $r t=\lambda^{2} b c$, that is $r t=\lambda^{2} k$, yielding further $\lambda=\sqrt{\frac{r t}{k}}$
- So, minimum communication cost at $c=\sqrt{\frac{k t}{r}}$ and $b=\sqrt{\frac{k r}{t}}$
- Substituting into $s+c r+b t$ yields $s+2 \sqrt{k r t}$
- Adding $r+s+t$ yields $r+2 s+t+2 \sqrt{k r t}$, which is usually dominated by $2 \sqrt{k r t}$

Complexity Theory for MapReduce

MapReduce: Complexity Theory

Idea

- Reminder: A "reducer" is the execution of a Reduce task on a single key and the associated value list
- Important considerations:
- Keep communication cost low
- Keep wall-clock time low
- Execute each reducer in main memory
- Intuition:
- The less communication, the less parallelism, so
- the more wall-clock time
- the more main memory needed
- Goal: Develop encompassing complexity theory

Reducer Size: Informal Explanation

Reducer size: maximum length of list [$\mathrm{v}, \mathrm{w}, \ldots \mathrm{]}$] after grouping keys Adopted from mmds.org

Reducer Size

Definition [Reducer Size]:
The reducer size q is the upper bound on the number of values to appear in the list of a single key.

Motivation

- Small reducer size forces to have many reducers
- Further creating many Reduce tasks implies high parallelism, hence small wall-clock time
- Sufficiently small reducer size allows to have all data in main memory

Replication Rate

Definition [Replication Rate]:
The replication rate r is the number of all key-value pairs generated by Map tasks, divided by the number of inputs.

Motivating Example

- One-pass matrix multiplication algorithm:
- Matrices involved are $n \times n$
- Reminder: Key-value pairs for $M N$ are $\left((i, k),\left(M, j, m_{i j}\right)\right), j=1, \ldots, n$ and $\left((i, k),\left(N, j, n_{j k}\right)\right), j=1, \ldots, n$
- Replication rate r is equal to n :
- Inputs are all $m_{i j}$ and $n_{j k}$
- For each $m_{i j}$, one generates key-value pairs for $(i, k), k=1, \ldots, n$
- For each $n_{j k}$, one generates key-value pairs for $(i, k), i=1, \ldots, n$
- Reducer size is $2 n$: for each key (i, k) there are n values from each $m_{i j}$ and n values from each $n_{j k}$

Example: Similarity Join

Situation

- Given large set X of elements
- Given similarity measure $s(x, y)$ for measuring similarity between $x, y \in X$
- Measure is symmetric: $s(x, y)=s(y, x)$
- Output of the algorithm: all pairs x, y where $s(x, y) \geq t$ for threshold t
- Exemplary input: 1 million images $\left(i, P_{i}\right)$ where
- i is ID of image
- P_{i} is picture itself
- Each picture is 1 MB

Example: Similarity Join

MapReduce: Bad Idea

- Use keys (i, j) for pair of pictures $\left(i, P_{i}\right),\left(j, P_{j}\right)$
- Map: generates $\left((i, j),\left[P_{i}, P_{j}\right]\right)$ as input for
- Reduce: computes $s\left(P_{i}, P_{j}\right)$ and decides whether $s\left(P_{i}, P_{j}\right) \geq t$
- Reducer size q is small: 2 MB ; expected to fit in main memory
- However, each picture makes part of 999999 key-value pairs, so

$$
r=999999
$$

- Hence, number of bytes communicated from Map to Reduce is

$$
10^{6} \times 999999 \times 10^{6}=10^{18}
$$

that is one exabyte

$$
0
$$

Example: Similarity Join

MapReduce: Better Idea

- Group images into g groups, each of $10^{6} / g$ pictures
- Map: For each $\left(i, P_{i}\right)$ generate $g-1$ key-value pairs
- Let u be group of P_{i}
- Let v be one of the other groups
- Keys are sets $\{u, v\}$ (set, so no order!)
- Value is $\left(i, P_{i}\right)$
- Overall: $\left(\{u, v\},\left(i, P_{i}\right)\right)$ as key-value pair
- Reduce: Consider key $\{u, v\}$
- Associated value list has $2 \times \frac{10^{6}}{g}$ values
- Consider $\left(i, P_{i}\right)$ and $\left(j, P_{j}\right)$ when i, j are from different groups
- Compute $s\left(P_{i}, P_{j}\right)$
- Compute $s\left(P_{i}, P_{j}\right)$ for P_{i}, P_{j} from same group on processing keys $\{u, u+1\}$

Example: Similarity Join

MapReduce: Better Idea

- Replication rate is $g-1$
- Each input element $\left(i, P_{i}\right)$ is turned into $g-1$ key-value pairs
- Reducer size is $2 \times \frac{10^{6}}{g}$
- Number of values on list for reducer
- This yields $2 \times \frac{10^{6}}{g} \times 10^{6}$ bytes stored at Reducer node

Example: Similarity Join

MapReduce: Better Idea

- Example $g=1000$:
- Input is 2 GB, fits into main memory
- Communication cost:

$$
\begin{equation*}
\underbrace{\left(10^{3} \times 999\right)}_{\text {number of reducers }} \times \underbrace{\left(2 \times 10^{3} \times 10^{6}\right)}_{\text {reducer size }} \approx 10^{15} \tag{2}
\end{equation*}
$$

- 1000 times less than brute-force
- Half a million reducers: maximum parallelism at Reduce nodes
- Computation cost is independent of g
- Always all-vs-all comparison of pictures
- Computing $s\left(P_{i}, P_{j}\right)$ for all i, j

MapReduce: Graph Model

Goal: Proving lower bounds on replication rate as function of reducer size, for many problems. Therefore:

Graph Model:

- Graph describes how outputs depend on inputs
- Reducers operate independently: each output has one reducer that receives all input required to compute output
- Model foundation:
- There is a set of inputs
- There is a set of outputs
- Outputs depends on inputs: many-to-many relationship

MapReduce: Graph Model Example

Graph for similarity join with four pictures
Adopted from mmds.org

MapReduce: Graph Model Matrix MUltiplication

Graph Model Matrix Multiplication

- Multiplying $n \times n$ matrices M and N makes
- $2 n^{2}$ inputs $m_{i j}, n_{j k}, 1 \leq i, j, k \leq n$
- n^{2} outputs $p_{i k}:=(M N)_{i k}, 1 \leq i, k \leq n$
- Each output $p_{i k}$ needs $2 n$ inputs $m_{i 1}, m_{i 2}, \ldots, m_{i n}$ and $n_{1 k}, n_{2 k}, \ldots, n_{n k}$
- Each input relates to n outputs: e.g. $m_{i j}$ to $p_{i 1}, p_{i 2}, \ldots, p_{i n}$

MapReduce: Graph Model Matrix Multiplication II

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]
$$

Input-output relationship graph for multiplying 2×2 matrices
Adopted from mmds.org

MapReduce: Mapping Schemas

A mapping schema with a given reducer size q is an assignment of inputs to reducers such that

- No reducer receives more than q inputs
- For every output, there is a reducer that receives all inputs required to generate the output

Consideration: The existence of a mapping schema for a given q distinguishes problems that can be solved in a single MapReduce job from those that cannot.

MApping Schema: Example

Consider computing similarity of p pictures, divided into g groups.

- Number of outputs: $\binom{p}{2}=\frac{p(p-1)}{2} \approx \frac{p^{2}}{2}$
- Reducer receives $2 p / g$ inputs necessary reducer size is $q=2 p / g$
- Replication rate is $r=g-1 \approx g$:

$$
r=2 p / q
$$

r inversely proportional to q which is common

- In a mapping schema for reducer size q :
- Each reducer is assigned exactly $2 p / g$ inputs
- In all cases, every output is covered by some reducer

Mapping Schemas: Not all Inputs Present

Example: Natural Join $R(A, B) \bowtie S(B, C)$, where many possible tuples $R(a, b), S(b, c)$ are missing.

- Theoretically $q=|A| \cdot|C|$ (keys were $b \in B$)
- But in practice many tuples $(a, b),(b, c)$ are missing for each b, so q possibly much smaller than $|A| \cdot|C|$

Main Consideration: One can increase q because of the missing inputs, without that inputs do no longer fit into main memory in practice

Mapping Schemas: LOWER BOUNDS ON Replication Rate

Technique for proving lower bounds on replication rates

1. Prove upper bound $g(q)$ on how many outputs a reducer with q inputs can cover
This may be difficult in some cases
2. Determine total number of outputs O
3. Let there be k reducers with $q_{i}<q, i=1, \ldots, k$ inputs observe that $\sum_{i=1}^{k} g\left(q_{i}\right)$ needs to be no less than O
4. Manipulate the inequality $\sum_{i=1}^{k} g\left(q_{i}\right) \geq O$ to get a lower bound on $\sum_{i=1}^{k} q_{i}$
5. Dividing the lower bound on $\sum_{i=1}^{k} q_{i}$ by number of inputs is lower bound on replication rate

Lower Bounds: Example All-Pairs Problem

- Recall that $r \leq 2 p / q$ was upper bound on replication rate for all-pairs problem
- Here: Lower bound on r that is half the upper bound

Lower Bounds: Example All-Pairs Problem

- Steps from slide before:
- Step 1: reducer with q inputs cannot cover more than $\binom{q}{2} \approx q^{2} / 2$ outputs
- Step 2: overall $\binom{p}{2} \approx p^{2} / 2$ outputs must be covered
- Step 3: So, the inequality approximately evaluates as

$$
\sum_{i=1}^{k} q_{i}^{2} / 2 \geq p^{2} / 2 \quad \Longleftrightarrow \quad \sum_{i=1}^{k} q_{i}^{2} \geq p^{2}
$$

- Step 4: From $q \geq q_{i}$, we obtain

$$
q \sum_{i=1}^{k} q_{i} \geq p^{2} \quad \Longleftrightarrow \quad \sum_{i=1}^{k} q_{i} \geq \frac{p^{2}}{q}
$$

- Step 5: Noting that $r=\left(\sum_{i=1}^{k} q_{i}\right) / p$, we obtain

$$
r \geq \frac{p}{q}
$$

Materials / Outlook

- See Mining of Massive Datasets, chapter 2.4-2.5
- For deepening your understanding, voluntary homework: please read through 2.6.7
- As usual, see http://www.mmds.org/ in general for further resources
- Next lecture: "MapReduce / Workflow Systems III; Mining Data Streams I"
- See Mining of Massive Datasets 2.6; 4.1-4.7

