# Map Reduce / Workflow Systems I 

Alexander Schönhuth

Bielefeld University
April 28, 2022

## Learning Goals Today

- Understand the technical challenges of parallelism / multi-node computation
- Understand the MapReduce paradigm
- Understand how to put the paradigm into effect in practice
- Understand the fundamental algorithms supported by MapReduce


## Learning Goals Today

- Understand the technical challenges of parallelism / multi-node computation
- Understand the MapReduce paradigm
- Understand how to put the paradigm into effect in practice
- Understand the fundamental algorithms supported by MapReduce


## Learning Goals Today

- Understand the technical challenges of parallelism / multi-node computation
- Understand the MapReduce paradigm
- Understand how to put the paradigm into effect in practice
- Understand the fundamental algorithms supported by MapReduce


## Learning Goals Today

- Understand the technical challenges of parallelism / multi-node computation
- Understand the MapReduce paradigm
- Understand how to put the paradigm into effect in practice
- Understand the fundamental algorithms supported by MapReduce


# Map Reduce: Introduction 

## MapReduce: Motivation I



Adopted from mmds.org

- Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory


## MapReduce: Motivation I



## Machine Learning, Statistics

## "Classical" Data Mining

Adopted from mmds.org

- Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory


## MapReduce: Motivation II

- Need to manage massive amounts of data quickly
- Within one particular application, data is massive
- For example (web searches), even with high performance disk read bandwidth, just reading 10 billion web pages requires several days
- But operations can be very regular (do the same thing to each web page) exploit the parallelism


## MapReduce: Motivation II

- Need to manage massive amounts of data quickly
- Within one particular application, data is massive
- For example (web searches), even with high performance disk read bandwidth, just reading 10 billion web pages requires several days
- But operations can be very regular (do the same thing to each web page) exploit the parallelism
- Many operations on databases (as supported by SQL, for example) can and need to be parallelized
- Ranking web pages ("PageRank") requires iterated multiplication of matrices with dimensions in the billions
- Searching for "friend networks" in social networks require operations on graphs with billions of nodes and edges


## MapReduce: Motivation II

- Need to manage massive amounts of data quickly
- Within one particular application, data is massive
- For example (web searches), even with high performance disk read bandwidth, just reading 10 billion web pages requires several days
- But operations can be very regular (do the same thing to each web page) exploit the parallelism
- Many operations on databases (as supported by SQL, for example) can and need to be parallelized
- Ranking web pages ("PageRank") requires iterated multiplication of matrices with dimensions in the billions
- Searching for "friend networks" in social networks require operations on graphs with billions of nodes and edges


## MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced worlflow systems
- Reminder: it's about analytics in this course


## MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced workflow systems
- Reminder. it's about analytics in this course


## MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced workflow systems
- Reminder. it's about analytics in this course


## MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced workflow systems
- Reminder: it's about analytics in this course


## MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced workflow systems
- Reminder: it's about analytics in this course


## MapReduce: Motivation III

- MapReduce enables convenient execution of parallelizable operations on compute clusters and clouds
- MapReduce executes such operations in a fault-tolerant manner
- MapReduce is the origin of more general ideas


## MapReduce: Motivation III

- MapReduce enables convenient execution of parallelizable operations on compute clusters and clouds
- MapReduce executes such operations in a fault-tolerant manner
- MapReduce is the origin of more general ideas


## MapReduce: Motivation III

- MapReduce enables convenient execution of parallelizable operations on compute clusters and clouds
- MapReduce executes such operations in a fault-tolerant manner
- MapReduce is the origin of more general ideas
- Systems supporting acyclic workflows in general
- Systems supporting recursive operations


## MapReduce: Motivation III

1 Gbps between
any pair of nodes
in a rack


Each rack contains 16-64 nodes

Adopted from mmds.org

## MapReduce: Motivation III

2-10 Gbps backbone between racks


Each rack contains 16-64 nodes

Adopted from mmds.org

## Distributed File Systems

## Distributed File Systems: Challenges and Characteristics

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
no starting over every time: back up data
- File Size: can be huge how to distribute them?
- Computation Time: should not be dominated by input/output data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends otherwise DFS not suitable


## Distributed File Systems: Challenges and Characteristics

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
no starting over every time: back up data
- File Size: can be huge
how to distribute them?
- Computation Time: should not be dominated by input/ output data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends otherwise DFS not suitable


## Distributed File Systems: Challenges and Characteristics

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
no starting over every time: back up data
- File Size: can be huge
how to distribute them?
- Computation Time: should not be dominated by input/output data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends otherwise DFS not suitable


## Distributed File Systems: Challenges and Characteristics

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
no starting over every time: back up data
- File Size: can be huge
how to distribute them?
- Computation Time: should not be dominated by input/output data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends otherwise DFS not suitable


## Distributed File Systems: Summary

- Data is divided into chunks (usually of size 64 MB )
- Chunks are replicated (3 times is common)
- Chunk copies are distributed across the nodes
- A file called master node keeps track of where chunks went
- A client library provides file access; talks to master and connects to individual servers
- Examples of DFS Implementations:


## Distributed File Systems: Summary

- Data is divided into chunks (usually of size 64 MB )
- Chunks are replicated (3 times is common)
- Chunk copies are distributed across the nodes
- A file called master node keeps track of where chunks went
- A client library provides file access; talks to master and connects to individual servers
- Examples of DFS Implementations:


## Distributed File Systems: Summary

- Data is divided into chunks (usually of size 64 MB )
- Chunks are replicated (3 times is common)
- Chunk copies are distributed across the nodes
- A file called master node keeps track of where chunks went
- A client library provides file access; talks to master and connects to individual servers
- Examples of DFS Implementations:
- Google File System (GFS): the original
- Hadoop Distributed File System (HDFS): open source, used with Hadoop, a MapReduce implementation
- Colossus: supposed to be an improvement over GFS; little has been published


## Distributed File Systems: Mode of Operation






Adopted from mmds.org

- Chunk servers correspond to nodes in racks


## Distributed File Systems: Mode of Operation



Chunk server 1


Chunk server 2


Adopted from mmds.org

- One file ("File C") in 6 chunks, C0, C1, C2, C3, C4, C5


## Distributed File Systems: Mode of Operation



Chunk server 1


Chunk server 2


Chunk server 3


Chunk server N

Adopted from mmds.org

- Replicating each chunk twice and putting copies to different nodes prevents damage due to failure


## Distributed File Systems: Mode of Operation



Chunk server 1


Chunk server 2


Chunk server 3


Chunk server N

Adopted from mmds.org

- Fill servers up; computations are carried out immediately by chunk servers


## Map Reduce: Workflow

## MapReduce: Workflow

1. Chunks are assigned to Map tasks, which turn each chunk into sequence of key-value pairs. $\quad\left[\left\langle k_{1}, v_{1}\right\rangle, \ldots,\left\langle k_{n}, v_{2}\right\rangle\right]$

- Key-value pair generation is specified by user

2. Master controller (automatic):
3. Reduce tasks combine values into final output

## MapReduce: Workflow

1. Chunks are assigned to Map tasks, which turn each chunk into sequence of key-value pairs.

- Key-value pair generation is specified by user

2. Master controller (automatic):

- Key-value pairs are collected
- Key-value pairs are sorted
- Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output

## MapReduce: Workflow

1. Chunks are assigned to Map tasks, which turn each chunk into sequence of key-value pairs.

- Key-value pair generation is specified by user

2. Master controller (automatic):

- Key-value pairs are collected
- Key-value pairs are sorted
- Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output

- Reduce tasks are specified by user
- Reduce tasks work on one key at a time


## MapReduce: Running Example

- Input: One, or several huge documents
- Desired Output: Counts of all words appearing in the documents - Applications:
- Important: In the example, distinguish between


## MapReduce: Running Example

- Input: One, or several huge documents
- Desired Output: Counts of all words appearing in the documents
- Applications:
- Detecting plagiarism
- Determining words characterizing documents for web searches
- Important: In the example, distinguish between


## MapReduce: Running Example

- Input: One, or several huge documents
- Desired Output: Counts of all words appearing in the documents
- Applications:
- Detecting plagiarism
- Determining words characterizing documents for web searches
- Important: In the example, distinguish between
- Input key-value pairs that reflect id-file pairs
- Intermediate key-value pairs that reflect key-value pairs from Map tasks, as seen in the slide before
- The latter ones are important for MapReduce


## MapReduce: Map

## Input <br> key-value pairs



Here, input key-value pairs refer to id-file (id-document) pairs
Adopted from mmds.org

## MapReduce: Map

Input
key-value pairs


Intermediate key-value pairs are the ones to be generated by a Map task Adopted from mmds.org

## MapReduce: Map



Here: intermediate key-value pairs correspond to $<$ 'word', $1>$ tuples
Adopted from mmds.org

## MapReduce: Reduce

## Intermediate

key-value pairs


Intermediate key-value pairs (<'word', $1>$ tuples) generated by Map

## MapReduce: Reduce



## MApRedUce: Reduce

$$
\text { ('apph', }[1,1,1]\rangle) \text { ('apple' } 3\rangle
$$

Intermediate key-value pairs


Output
key-value pairs


Output key-value pairs generated by Reduce: here <'word',count> tuples

## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v>$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:


## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $<k, v>$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:


## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v>$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:
- Map $(<k, v>) \rightarrow<k^{\prime}, v^{\prime}>^{*}$
- Maps input pair $\langle k, v\rangle$ to multi-set of key-value pairs $\left\langle k^{\prime}, v^{\prime}\right\rangle$
- $\left\langle k^{\prime}, v^{\prime}\right\rangle$ is intermediate key-value in schematic on slides before


## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v>$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:
- Map $(<k, v>) \rightarrow<k^{\prime}, v^{\prime}>^{*}$
- Maps input pair $\langle k, v\rangle$ to multi-set of key-value pairs $\left\langle k^{\prime}, v^{\prime}\right\rangle$
- $\left\langle k^{\prime}, v^{\prime}\right\rangle$ is intermediate key-value in schematic on slides before
- One Map call for each input key-value pair $\langle k, v\rangle$


## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v>$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:
- Map $(<k, v>) \rightarrow<k^{\prime}, v^{\prime}>^{*}$
- Maps input pair $\langle k, v\rangle$ to multi-set of key-value pairs $\left\langle k^{\prime}, v^{\prime}\right\rangle$
- $\left\langle k^{\prime}, v^{\prime}\right\rangle$ is intermediate key-value in schematic on slides before
- One Map call for each input key-value pair $\langle k, v\rangle$
- Reduce $\left(<k^{\prime}, v^{\prime}>^{*}\right) \rightarrow<k^{\prime}, v^{\prime \prime}>^{*}$
- For each key $k^{\prime}$ all key-value pairs $\left\langle k^{\prime}, v^{\prime}>\right.$ are reduced together
- One Reduce call for each unique key $k^{\prime}$


## MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v\rangle$ usually correspond to file $(v)$ and id $(k)$ of the file
- To be provided by programmer:
- $\operatorname{Map}(<k, v>) \rightarrow<k^{\prime}, v^{\prime}>^{*}$
- Maps input pair $\langle k, v\rangle$ to multi-set of key-value pairs $\left\langle k^{\prime}, v^{\prime}\right\rangle$
- $\left\langle k^{\prime}, v^{\prime}\right\rangle$ is intermediate key-value in schematic on slides before
- One Map call for each input key-value pair $\langle k, v\rangle$
- Reduce $\left(<k^{\prime}, v^{\prime}>^{*}\right) \rightarrow<k^{\prime}, v^{\prime \prime}>^{*}$
- For each key $k^{\prime}$ all key-value pairs $\left\langle k^{\prime}, v^{\prime}>\right.$ are reduced together
- One Reduce call for each unique key $k^{\prime}$


## MapReduce Example: Word Counting

Provided by the
programmer

| MAP: |
| :---: |
| Read input and |
| produces a set of |
| key-value pairs |

> The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/mache partnership.
> "The work we're doing now - the robotics we're doing - is what we're going to
> need.............

(key, value)

Intermediate key-value pairs correspond to $<$ 'word', $1>$ tuples
Adopted from mmds.org

## MapReduce Example: Word Counting



Intermediate key-value pairs are sorted and hashed by key (automatic)
Adopted from mmds.org

## MapReduce Example: Word Counting



Adopted from mmds.org

## MapReduce Example: Word Counting



Map tasks are parallelized across nodes: one Map per chunk
Adopted from mmds.org

## MapReduce Example: Word Counting



Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

## Example: Word Counting Code

```
map(key, value)
// key: document name, value: text of document
    foreach word w in value:
        emit (w, 1)
reduce(key, values)
// key: a word, values: an iterator over counts
    result = 0
    foreach count }v\mathrm{ in values:
        result += v
    emit(key, result)
```


## MapReduce: Workflow Summary



## Summary

Here $\langle k, v\rangle$ refers to intermediate key-value pair earlier
Upon sorting key-value pairs are hashed

## Map Reduce: Execution

## MapReduce: Host Size Example

- Input: Large web corpus with metadata file
- Metadata file has entries: (URL, size, date,...)
- Would like to determine size for each host, which may encompass several URL's
- Map: For each entry, key-value pair: < host(URL), size >
- Reduce: Add up sizes for each host


## MapReduce: Host Size Example

- Input: Large web corpus with metadata file
- Metadata file has entries: (URL, size, date,...)
- Would like to determine size for each host, which may encompass several URL's
- Map: For each entry, key-value pair: < host $(U R L)$, size $>$
- Reduce: Add up sizes for each host


## MapReduce: Host Size Example

- Input: Large web corpus with metadata file
- Metadata file has entries: (URL, size, date,...)
- Would like to determine size for each host, which may encompass several URL's
- Map: For each entry, key-value pair: < host(URL), size >
- Reduce: Add up sizes for each host


## MapReduce: Language Example

- Input: Many (possibly large) documents
- Goal: Count all 5-word sequences
- Map: Extract $<5$ - word - sequence, $1>$ as key-value pairs
- Reduce: Add up counts across 5-word-sequence keys: several such keys per document


## MapReduce: Language Example

- Input: Many (possibly large) documents
- Goal: Count all 5-word sequences
- Map: Extract $<5$ - word - sequence, $1>$ as key-value pairs
- Reduce: Add up counts across 5-word-sequence keys: several such keys per document


## MapReduce: Language Example

- Input: Many (possibly large) documents
- Goal: Count all 5 -word sequences
- Map: Extract $<5$ - word - sequence, $1>$ as key-value pairs
- Reduce: Add up counts across 5-word-sequence keys: several such keys per document


## MapReduce: Language Example II

- Input: Many (possibly large) documents
- Goal: Count all 5 -word sequences
$\square$
- Alternative Map: Extract $<5$ - word - sequence, count $>$ from each document, where count refers to number of appearances of 5 -word-sequence in one document)
- Alternative Reduce: Add up counts across 5-word-sequence keys: one key per document


## MapReduce: Language Example II

- Input: Many (possibly large) documents
- Goal: Count all 5 -word sequences
- Alternative Map: Extract < 5 - word - sequence, count $>$ from each document, where count refers to number of appearances of 5 -word-sequence in one document)


## MapReduce: Language Example II

- Input: Many (possibly large) documents
- Goal: Count all 5 -word sequences
- Alternative Map: Extract < 5 - word - sequence, count $>$ from each document, where count refers to number of appearances of 5-word-sequence in one document)
- Alternative Reduce: Add up counts across 5-word-sequence keys: one key per document


## MapReduce: Combiners

- The 'Alternative Map' is a strategy when Reduce tasks are associative
- In that case, some of the Reduce work can already done in the Map step
$>$ Adding is associative and commutative:
- So, the Map task can generate $<$ key, count $>$ per document instead of just count times many $<k e y, 1>$ key-value pairs
- Skerw: Runtime needed by Reduce tasks can vary substantially


## MapReduce: Combiners

- The 'Alternative Map' is a strategy when Reduce tasks are associative
- In that case, some of the Reduce work can already done in the Map step
- Adding is associative and commutative:

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
a+b & =b+a
\end{aligned}
$$

- So, the Map task can generate $<$ key, count $>$ per document instead of just count times many $<k e y, 1>$ key-value pairs
- Skew: Runtime needed by Reduce tasks can vary substantially


## MapReduce: Combiners

- The 'Alternative Map' is a strategy when Reduce tasks are associative
- In that case, some of the Reduce work can already done in the Map step
- Adding is associative and commutative:

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
a+b & =b+a
\end{aligned}
$$

- So, the Map task can generate $<$ key, count $>$ per document instead of just count times many $<k e y, 1>$ key-value pairs
- Skew: Runtime needed by Reduce tasks can vary substantially
- Random assignment of keys to Reduce tasks balances out skew
- Using more Reduce tasks than nodes leads to balanced work load per node


## MapReduce: Combiners

- The 'Alternative Map' is a strategy when Reduce tasks are associative
- In that case, some of the Reduce work can already done in the Map step
- Adding is associative and commutative:

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
a+b & =b+a
\end{aligned}
$$

- So, the Map task can generate $<$ key, count $>$ per document instead of just count times many $<k e y, 1>$ key-value pairs
- Skew: Runtime needed by Reduce tasks can vary substantially
- Random assignment of keys to Reduce tasks balances out skew
- Using more Reduce tasks than nodes leads to balanced work load per node


## MapReduce: Execution



Execution of MapReduce program: overview

## MapReduce: Execution

- User needs to choose number of Map and Reduce tasks
- One Map task per data chunk (so many more than nodes)
- Less Reduce tasks: keep number of intermediate files low
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker process reports to Master when finished; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:


## MApREDUCE: EXECUTION

- User needs to choose number of Map and Reduce tasks
- One Map task per data chunk (so many more than nodes)
- Less Reduce tasks: keep number of intermediate files low
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker process reports to Master when finished; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:


## MApREDUCE: EXECUTION

- User needs to choose number of Map and Reduce tasks
- One Map task per data chunk (so many more than nodes)
- Less Reduce tasks: keep number of intermediate files low
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker process reports to Master when finished; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:


## MApREDUCE: EXECUTION

- User needs to choose number of Map and Reduce tasks
- One Map task per data chunk (so many more than nodes)
- Less Reduce tasks: keep number of intermediate files low
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker process reports to Master when finished; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:


## MApREDUCE: EXECUTION

- User needs to choose number of Map and Reduce tasks
- One Map task per data chunk (so many more than nodes)
- Less Reduce tasks: keep number of intermediate files low
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker process reports to Master when finished; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:
- When Worker nodes fail, Master reassigns tasks to other nodes
- When Master node fails, entire process needs to be restarted


## Map Reduce: Algorithms

## MapReduce: Algorithms

- MapReduce does not necessarily cater to every problem that profits from parallelization
- Example: Online retail sales: searches for products, recording sales
- Require little computation, but modify underlying databases
- Original Purpose: Multiplying matrices required for PageRank (Google)
- Databases: Relational algebra operations


## MapReduce: Algorithms

- MapReduce does not necessarily cater to every problem that profits from parallelization
- Example: Online retail sales: searches for products, recording sales
- Require little computation, but modify underlying databases
- Original Purpose: Multiplying matrices required for PageRank (Google)
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Databases: Relational algebra operations


## MapReduce: Algorithms

- MapReduce does not necessarily cater to every problem that profits from parallelization
- Example: Online retail sales: searches for products, recording sales
- Require little computation, but modify underlying databases
- Original Purpose: Multiplying matrices required for PageRank (Google)
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Databases: Relational algebra operations
- Selection, projection
- Union, intersection, difference
- Natural join


## MapReduce: Matrix-Vector Multiplication I

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, for (very) large $m, n$. We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j}
$$



M

## MapReduce: Matrix-Vector Multiplication I

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, for (very) large $m, n$. We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{1}
\end{equation*}
$$

Assumptions:

- $M, v$ stored as files in DFS
- coordinates $i, j$ of entries $m_{i j}$ discoverable (e.g. possible through explicit storage $\left(i, j, m_{i j}\right)$ )
- coordinates $j$ of entries v. discoverable


## MapReduce: Matrix-Vector Multiplication I

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, for (very) large $m, n$. We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{1}
\end{equation*}
$$

Assumptions:

- $M, v$ stored as files in DFS
- coordinates $i, j$ of entries $m_{i j}$ discoverable (e.g. possible through explicit storage $\left(i, j, m_{i j}\right)$ )
- coordinates $j$ of entries $v_{j}$ discoverable


## MapReduce: Matrix-Vector Multiplication II

We would like to compute $M v=x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{2}
\end{equation*}
$$

## Map

1. Take in suitably sized chunk of $M$ and (entire) $v$
2. Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$


## MapReduce: Matrix-Vector Multiplication II

We would like to compute $M v=x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{2}
\end{equation*}
$$

## Map

1. Take in suitably sized chunk of $M$ and (entire) $v$
2. Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$

## MapReduce: Matrix-Vector Multiplication II

We would like to compute $M v=x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{2}
\end{equation*}
$$

## Map

1. Take in suitably sized chunk of $M$ and (entire) $v$
2. Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$

## Reduce

1. Sum all values of pairs with key $i$, yielding $x_{i}$

## MapReduce: Matrix-Vector Multiplication III

We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{3}
\end{equation*}
$$

Situation: Vector $v$ too large to fit in main memory

## MapReduce: Matrix-Vector Multiplication III

We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{3}
\end{equation*}
$$

Situation: Vector $v$ too large to fit in main memory
Solution: Cut both $M$ and $v$ into stripes, process (chunks of) stripes


## MapReduce: Matrix-Vector Multiplication III



## Map

- Take in suitably sized chunk of stripe of $M$ and stripe of $v$
- Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$


## MapReduce: Matrix-Vector Multiplication III



Adopted from mmds.org

## Map

- Take in suitably sized chunk of stripe of $M$ and stripe of $v$
- Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$


## Reduce

$\Rightarrow$ Sum all values of pairs with key $i$, yielding $x_{i}$

## MapReduce: Relational Algebras

MapReduce: Operations on large-scale data in database queries

- Reminder: Relational Model
- A relation is a table with
- column headers called attributes
- rows called tuples

| From | To |
| :--- | :--- |
| url1 | url2 |
| url1 | url3 |
| url2 | url3 |
| url2 | url4 |
| .. | $\cdots$ |

Relation Links (from mmds.org)

## MapReduce: Relational Algebras

MapReduce: Operations on large-scale data in database queries

- Reminder: Relational Model
- A relation is a table with
- column headers called attributes
- rows called tuples
- We write $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for a relation $R$ with attributes $A_{1}, A_{2}, \ldots, A_{n}$

| From | To |
| :--- | :--- |
| url1 | url2 |
| url1 | url3 |
| url2 | url3 |
| url2 | url4 |
| $\ldots$ | $\ldots$ |

Relation Links (from mmds.org)

## MapReduce: Relational Algebra Operations

- Selection: Apply condition C and select only tuples (rows) from $R$ that satisfy $C$, denoted $\sigma_{C}(R)$
- Choose only rows from $R$ that refer to links leaving from or leading to a particular URL
- Projection: Choose a subset $S$ of columns from $R$ to generate new table $\pi_{S}(R)$


## MapReduce: Relational Algebra Operations

- Selection: Apply condition C and select only tuples (rows) from $R$ that satisfy $C$, denoted $\sigma_{C}(R)$
- Choose only rows from $R$ that refer to links leaving from or leading to a particular URL
- Projection: Choose a subset $S$ of columns from $R$ to generate new table $\pi_{S}(R)$
- Generate table with only URL's that have incoming links


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- If not, do nothing
- Reduce: Reflects identity function, turns key-value pairs into output


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- Reduce: Reflects identity function, turns key-value pairs into output


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- If not, do nothing
- Reduce: Reflects identity function, turns key-value pairs into output


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- If not, do nothing
- Reduce: Reflects identity function, turns key-value pairs into output


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- If not, do nothing
- Reduce: Reflects identity function, turns key-value pairs into output

Projection $\pi_{S}(R)$

- Map: For each tuple $t \in R$ compute tuple $t^{\prime}$ by removing attributes not from $S$. Generate key-value pair $\left(t^{\prime}, t^{\prime}\right)$
$\rightarrow$ Reduce: Two different $t$ may turn into identical $t^{\prime}$, so there may be identical key-value pairs $\left(t^{\prime}, t^{\prime}\right)$, the system turns into $\left(t^{\prime},\left[t^{\prime}, \ldots, t^{\prime}\right]\right)$ by grouping; output just $\left(t^{\prime}, t^{\prime}\right)$, yielding one key-value pair for each $t^{\prime}$


## MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple $t$ in $R$ check whether $C$ applies
- If yes, generate key-value pair $(t, t)$
- If not, do nothing
- Reduce: Reflects identity function, turns key-value pairs into output

Projection $\pi_{S}(R)$

- Map: For each tuple $t \in R$ compute tuple $t^{\prime}$ by removing attributes not from $S$. Generate key-value pair $\left(t^{\prime}, t^{\prime}\right)$
- Reduce: Two different $t$ may turn into identical $t^{\prime}$, so there may be identical key-value pairs $\left(t^{\prime}, t^{\prime}\right)$, the system turns into $\left(t^{\prime},\left[t^{\prime}, \ldots, t^{\prime}\right]\right)$ by grouping; output just $\left(t^{\prime}, t^{\prime}\right)$, yielding one key-value pair for each $t^{\prime}$


## MapReduce: Relational Algebra Operations

- Union, Intersection, Difference: Set operations applied to sets of tuples from two relations $R$ and $S$
- Imagine two tables, for links leaving from URL's in Europe and North America
- Intersection: compute set of URL's that have incoming links from both Europe and North America
- Natural Join: Generate new table by joining tuples from two tables $R$ and $S$ when agreeing on attributes shared by two tables, yielding a new table $R \bowtie S$


## MapReduce: Relational Algebra Operations

- Union, Intersection, Difference: Set operations applied to sets of tuples from two relations $R$ and $S$
- Imagine two tables, for links leaving from URL's in Europe and North America
- Intersection: compute set of URL's that have incoming links from both Europe and North America
- Natural Join: Generate new table by joining tuples from two tables $R$ and $S$ when agreeing on attributes shared by two tables, yielding a new table $R \bowtie S$
- Imagine two tables of links, one with links from Europe to Asia $L_{E A}$, and one from Asia to North America $L_{A N}$
- Join two URL pairs when 'To' from first table agrees with 'From' from second table
- This yields table $L_{E A} \bowtie L_{A N}$ with three columns


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
> Reduce: After grouping, there will be two kinds of pairs: either


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything
- For Intersection, output $(t, t)$ only for $(t,[t, t])$


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything
- For Intersection, output $(t, t)$ only for $(t,[t, t])$


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything
- For Intersection, output $(t, t)$ only for $(t,[t, t])$


## Difference

- Map: For a tuple $t$ in $R$, generate key-value pair $(t, R)$, and for tuple $t$ in $S$ generate key-value pair $(t, S)$ (use single bits for distinguishing $R, S$ )


## Relational Algebra Operations

## Union, Intersection

- Map: For each tuple $t$ from both $R$ and $S$ generate key-value pair $(t, t)$
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything
- For Intersection, output $(t, t)$ only for $(t,[t, t])$


## Difference

- Map: For a tuple $t$ in $R$, generate key-value pair $(t, R)$, and for tuple $t$ in $S$ generate key-value pair $(t, S)$ (use single bits for distinguishing $R, S$ )
- Reduce: After grouping, three cases: $(t,[R]),(t,[R, S]),(t,[S])$. Output $(t, t)$ only for $(t,[R])$


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple $(b, c)$ from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple ( $b, c$ ) from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
$\rightarrow$ Construct all pairs of values where first component is like $(R, a)$ and second component is like $(S, c)$, yielding triples
$\rightarrow$ Turn triples into triples $(a, b, c)$ being output


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple ( $b, c$ ) from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
- Construct all pairs of values where first component is like $(R, a)$ and second component is like ( $S, c$ ), yielding triples $(b,(R, a),(S, c))$


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple $(b, c)$ from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
- Construct all pairs of values where first component is like $(R, a)$ and second component is like ( $S, c$ ), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples ( $a, b, c$ ) being output


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple $(b, c)$ from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
- Construct all pairs of values where first component is like ( $R, a$ ) and second component is like ( $S, c$ ), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples ( $a, b, c$ ) being output


## General Natural Join

Do like for relations with two attributes, by considering

- $A$ attributes from $R$ not in $S$


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple $(b, c)$ from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
- Construct all pairs of values where first component is like ( $R, a$ ) and second component is like ( $S, c$ ), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples ( $a, b, c$ ) being output


## General Natural Join

Do like for relations with two attributes, by considering

- $A$ attributes from $R$ not in $S$
- B attributes both in $R, S$


## Relational Algebra Operations

Natural Join: $R(A, B) \bowtie S(B, C)$

- Map: For each tuple $t=(a, b)$ from $R$, generate key-value pair $(b,(R, a))$. For each tuple $(b, c)$ from $S$, generate $(b,(S, c))$.
- Reduce: After grouping, each key value $b$ has list of values being either of the form $(R, a)$ or $(S, c)$
- Construct all pairs of values where first component is like ( $R, a$ ) and second component is like ( $S, c$ ), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples ( $a, b, c$ ) being output


## General Natural Join

Do like for relations with two attributes, by considering

- $A$ attributes from $R$ not in $S$
- B attributes both in $R, S$


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$. We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- Reduce: Need to work on list of values of keys $(i, l)$ :


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$. We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Reduce: Need to work on list of values of keys $(i, l)$ :


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$. We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :
- Sort values [which are either $\left(M, j, m_{i j}\right)$ or $\left.\left(N, j, n_{j l}\right)\right]$ by $j$


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :
- Sort values [which are either $\left(M, j, m_{i j}\right)$ or $\left(N, j, n_{j l}\right)$ ] by $j$
- After sorting, multiply each of two consecutive values $m_{i j}, n_{j l}$


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :
- Sort values [which are either $\left(M, j, m_{i j}\right)$ or $\left(N, j, n_{j l}\right)$ ] by $j$
- After sorting, multiply each of two consecutive values $m_{i j}, n_{j l}$
- Add up all the products


## MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large $m, n, k$.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, $M$ and $N$ are stored by means of single bit
- Reduce: Need to work on list of values of keys $(i, l)$ :
- Sort values [which are either $\left(M, j, m_{i j}\right)$ or $\left(N, j, n_{j l}\right)$ ] by $j$
- After sorting, multiply each of two consecutive values $m_{i j}, n_{j l}$
- Add up all the products

Remark: There are more efficient ways to multiply matrices using Natural Join (2.3.9)

## Materials / Outlook

- See Mining of Massive Datasets, chapter 2.1-2.3
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Map Reduce / Workflow Systems II"
- See Mining of Massive Datasets 2.4-2.6

