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LEARNING GOALS TODAY

I Understand the technical challenges of parallelism / multi-node
computation

I Understand the MapReduce paradigm

I Understand how to put the paradigm into effect in practice

I Understand the fundamental algorithms supported by
MapReduce



LEARNING GOALS TODAY

I Understand the technical challenges of parallelism / multi-node
computation

I Understand the MapReduce paradigm

I Understand how to put the paradigm into effect in practice

I Understand the fundamental algorithms supported by
MapReduce



LEARNING GOALS TODAY

I Understand the technical challenges of parallelism / multi-node
computation

I Understand the MapReduce paradigm

I Understand how to put the paradigm into effect in practice

I Understand the fundamental algorithms supported by
MapReduce



LEARNING GOALS TODAY

I Understand the technical challenges of parallelism / multi-node
computation

I Understand the MapReduce paradigm

I Understand how to put the paradigm into effect in practice

I Understand the fundamental algorithms supported by
MapReduce



Map Reduce: Introduction



MAPREDUCE: MOTIVATION I

Adopted from mmds.org

I Machine Learning, Statistics: all data fits in main memory
I Classical Data Mining: data too big to fit in main memory
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MAPREDUCE: MOTIVATION II

I Need to manage massive amounts of data quickly

I Within one particular application, data is massive
I For example (web searches), even with high performance disk read

bandwidth, just reading 10 billion web pages requires several days

I But operations can be very regular (do the same thing to each web
page) + exploit the parallelism

I Many operations on databases (as supported by SQL, for example) can
and need to be parallelized

I Ranking web pages (“PageRank”) requires iterated multiplication of
matrices with dimensions in the billions

I Searching for “friend networks” in social networks require operations on
graphs with billions of nodes and edges
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MAPREDUCE: MOTIVATION II

I New software stack: get parallelism not from single
supercomputer, but from computing clusters

I First, need to deal with storing data
+ Distributed file systems (hardware based issues/solutions)

I Second, new higher-level programming systems required
+ MapReduce

I Third, MapReduce reflects early attempts: + More sophisticated
workflow systems

I Here, we will deal predominantly with MapReduce first

I We will also consider most advanced workflow systems

I Reminder: it’s about analytics in this course
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MAPREDUCE: MOTIVATION III

I MapReduce enables convenient execution of parallelizable
operations on compute clusters and clouds

I MapReduce executes such operations in a fault-tolerant manner

I MapReduce is the origin of more general ideas
I Systems supporting acyclic workflows in general
I Systems supporting recursive operations
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Distributed File Systems



DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

I Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
+ no starting over every time: back up data

I File Size: can be huge
+ how to distribute them?

I Computation Time: should not be dominated by input/output
+ data should be as close as possible to compute nodes

I Data: does not change, new data only makes small appends
+ otherwise DFS not suitable
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DISTRIBUTED FILE SYSTEMS: SUMMARY

I Data is divided into chunks (usually of size 64 MB)

I Chunks are replicated (3 times is common)

I Chunk copies are distributed across the nodes

I A file called master node keeps track of where chunks went

I A client library provides file access; talks to master and connects
to individual servers

I Examples of DFS Implementations:
I Google File System (GFS): the original
I Hadoop Distributed File System (HDFS): open source, used with

Hadoop, a MapReduce implementation
I Colossus: supposed to be an improvement over GFS; little has been

published
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DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Chunk servers correspond to nodes in racks
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I One file (“File C”) in 6 chunks, C0, C1, C2, C3, C4, C5



DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Replicating each chunk twice and putting copies to different
nodes prevents damage due to failure



DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Fill servers up; computations are carried out immediately by
chunk servers



Map Reduce: Workflow



MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into
sequence of key-value pairs.

I Key-value pair generation is specified by user

2. Master controller (automatic):
I Key-value pairs are collected
I Key-value pairs are sorted
I Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output
I Reduce tasks are specified by user
I Reduce tasks work on one key at a time
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MAPREDUCE: RUNNING EXAMPLE

I Input: One, or several huge documents

I Desired Output: Counts of all words appearing in the documents

I Applications:
I Detecting plagiarism
I Determining words characterizing documents for web searches

I Important: In the example, distinguish between
I Input key-value pairs that reflect id-file pairs
I Intermediate key-value pairs that reflect key-value pairs from

Map tasks, as seen in the slide before
I The latter ones are important for MapReduce
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MAPREDUCE: MAP

Here, input key-value pairs refer to id-file (id-document) pairs

Adopted from mmds.org



MAPREDUCE: MAP

Intermediate key-value pairs are the ones to be generated by a Map task

Adopted from mmds.org



MAPREDUCE: MAP

Here: intermediate key-value pairs correspond to <’word’,1> tuples

Adopted from mmds.org
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MAPREDUCE: REDUCE

Intermediate key-value pairs (<’word’,1> tuples) generated by Map

Adopted from mmds.org



MAPREDUCE: REDUCE

Intermediate key-value pairs generated by Map

Adopted from mmds.org
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MAPREDUCE: REDUCE

Output key-value pairs generated by Reduce: here <’word’,count> tuples

Adopted from mmds.org
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MAPREDUCE: FORMAL SUMMARY

I Input: A set of (key, value)-pairs < k, v >

I < k, v > usually correspond to file (v) and id (k) of the file

I To be provided by programmer:
I Map(< k, v >) !< k0, v0 >⇤

I Maps input pair < k, v > to multi-set of key-value pairs < k0, v0 >
I < k0, v0 > is intermediate key-value in schematic on slides before
I One Map call for each input key-value pair < k, v >

I Reduce(< k0, v0 >⇤) !< k0, v00 >⇤

I For each key k0 all key-value pairs < k0, v0 > are reduced together
I One Reduce call for each unique key k0
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MAPREDUCE EXAMPLE: WORD COUNTING

Intermediate key-value pairs correspond to <’word’,1> tuples

Adopted from mmds.org



MAPREDUCE EXAMPLE: WORD COUNTING

Intermediate key-value pairs are sorted and hashed by key (automatic)

Adopted from mmds.org



MAPREDUCE EXAMPLE: WORD COUNTING

Reduce sums up all values for each key

Adopted from mmds.org

omitted here : generating (crew , Gil])



MAPREDUCE EXAMPLE: WORD COUNTING

Map tasks are parallelized across nodes: one Map per chunk

Adopted from mmds.org



MAPREDUCE EXAMPLE: WORD COUNTING

Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

Adopted from mmds.org



EXAMPLE: WORD COUNTING CODE

map(key, value)
// key: document name, value: text of document
foreach word w in value:

emit(w,1)

reduce(key, values)
// key: a word, values: an iterator over counts
result = 0
foreach count v in values:

result += v
emit(key, result)



MAPREDUCE: WORKFLOW SUMMARY

Summary
Here < k, v > refers to intermediate key-value pair earlier

Upon sorting key-value pairs are hashed

Adopted from mmds.org



Map Reduce: Execution



MAPREDUCE: HOST SIZE EXAMPLE

I Input: Large web corpus with metadata file
I Metadata file has entries: (URL, size, date,...)

I Would like to determine size for each host, which may
encompass several URL’s

I Map: For each entry, key-value pair: < host(URL), size >

I Reduce: Add up sizes for each host
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MAPREDUCE: LANGUAGE EXAMPLE

I Input: Many (possibly large) documents

I Goal: Count all 5-word sequences

I Map: Extract < 5 � word � sequence, 1 > as key-value pairs

I Reduce: Add up counts across 5-word-sequence keys: several such
keys per document
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I Input: Many (possibly large) documents

I Goal: Count all 5-word sequences

I Alternative Map: Extract < 5 � word � sequence, count > from each
document, where count refers to number of appearances of
5-word-sequence in one document)

I Alternative Reduce: Add up counts across 5-word-sequence keys:
one key per document
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MAPREDUCE: COMBINERS

I The ’Alternative Map’ is a strategy when Reduce tasks are
associative

I In that case, some of the Reduce work can already done in the
Map step

I Adding is associative and commutative:

(a + b) + c = a + (b + c)
a + b = b + a

I So, the Map task can generate < key, count > per document
instead of just count times many < key, 1 > key-value pairs

I Skew: Runtime needed by Reduce tasks can vary substantially
I Random assignment of keys to Reduce tasks balances out skew
I Using more Reduce tasks than nodes leads to balanced work load

per node



MAPREDUCE: COMBINERS

I The ’Alternative Map’ is a strategy when Reduce tasks are
associative

I In that case, some of the Reduce work can already done in the
Map step

I Adding is associative and commutative:

(a + b) + c = a + (b + c)
a + b = b + a

I So, the Map task can generate < key, count > per document
instead of just count times many < key, 1 > key-value pairs

I Skew: Runtime needed by Reduce tasks can vary substantially
I Random assignment of keys to Reduce tasks balances out skew
I Using more Reduce tasks than nodes leads to balanced work load

per node



MAPREDUCE: COMBINERS

I The ’Alternative Map’ is a strategy when Reduce tasks are
associative

I In that case, some of the Reduce work can already done in the
Map step

I Adding is associative and commutative:

(a + b) + c = a + (b + c)
a + b = b + a

I So, the Map task can generate < key, count > per document
instead of just count times many < key, 1 > key-value pairs

I Skew: Runtime needed by Reduce tasks can vary substantially
I Random assignment of keys to Reduce tasks balances out skew
I Using more Reduce tasks than nodes leads to balanced work load

per node



MAPREDUCE: COMBINERS

I The ’Alternative Map’ is a strategy when Reduce tasks are
associative

I In that case, some of the Reduce work can already done in the
Map step

I Adding is associative and commutative:

(a + b) + c = a + (b + c)
a + b = b + a

I So, the Map task can generate < key, count > per document
instead of just count times many < key, 1 > key-value pairs

I Skew: Runtime needed by Reduce tasks can vary substantially
I Random assignment of keys to Reduce tasks balances out skew
I Using more Reduce tasks than nodes leads to balanced work load

per node



MAPREDUCE: EXECUTION

Execution of MapReduce program: overview

Adopted from mmds.org



MAPREDUCE: EXECUTION

I User needs to choose number of Map and Reduce tasks
I One Map task per data chunk (so many more than nodes)
I Less Reduce tasks: keep number of intermediate files low
I One Master node

I Master keeps track of status of tasks (idle, in process, completed)

I Worker process reports to Master when finished; gets assigned a
new task

I Master keeps track of location and sizes of files

I Node Failures:
I When Worker nodes fail, Master reassigns tasks to other nodes
I When Master node fails, entire process needs to be restarted
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Map Reduce: Algorithms



MAPREDUCE: ALGORITHMS

I MapReduce does not necessarily cater to every problem that
profits from parallelization

I Example: Online retail sales: searches for products, recording sales
I Require little computation, but modify underlying databases

I Original Purpose: Multiplying matrices required for PageRank
(Google)

I Matrix-vector multiplication
I Matrix-matrix multiplication

I Databases: Relational algebra operations
I Selection, projection
I Union, intersection, difference
I Natural join
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MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (mij) 2 Rm⇥n, v = (v1, ..., vn) 2 Rn, for (very) large m, n.
We would like to compute Mv =: x = (x1, ..., xm) 2 Rm

xi =
nX

j=1

mijvj (1)

Assumptions:

I M, v stored as files in DFS

I coordinates i, j of entries mij discoverable (e.g. possible through
explicit storage (i, j,mij))

I coordinates j of entries vj discoverable

.
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MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II

We would like to compute Mv = x = (x1, ..., xm) 2 Rm

xi =
nX

j=1

mijvj (2)

Map

1. Take in suitably sized chunk of M and (entire) v

2. Generate key-value pairs (i,mijvj)

Reduce

1. Sum all values of pairs with key i, yielding xi

Hm
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We would like to compute Mv =: x = (x1, ..., xm) 2 Rm

xi =
nX

j=1

mijvj (3)

Situation: Vector v too large to fit in main memory

Solution: Cut both M and v into stripes, process (chunks of) stripes

Adopted from mmds.org
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Adopted from mmds.org

Map

I Take in suitably sized chunk of stripe of M and stripe of v

I Generate key-value pairs (i,mijvj)

Reduce

I Sum all values of pairs with key i, yielding xi
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MAPREDUCE: RELATIONAL ALGEBRAS

MapReduce: Operations on large-scale data in database queries

I Reminder: Relational Model
I A relation is a table with
I column headers called attributes
I rows called tuples
I We write R(A1,A2, ...,An) for a

relation R with attributes
A1,A2, ...,An

Relation Links (from mmds.org)
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MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

I Selection: Apply condition C and select only tuples (rows) from
R that satisfy C, denoted �C(R)

I Choose only rows from R that refer to links leaving from or
leading to a particular URL

I Projection: Choose a subset S of columns from R to generate new
table ⇡S(R)

I Generate table with only URL’s that have incoming links
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MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection �C(R)

I Map: For each tuple t in R check whether C applies
I If yes, generate key-value pair (t, t)
I If not, do nothing

I Reduce: Reflects identity function, turns key-value pairs into output

Projection ⇡S(R)

I Map: For each tuple t 2 R compute tuple t0 by removing attributes not
from S. Generate key-value pair (t0, t0)

I Reduce: Two different t may turn into identical t0, so there may be
identical key-value pairs (t0, t0), the system turns into (t0, [t0, ..., t0]) by
grouping; output just (t0, t0), yielding one key-value pair for each t0
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MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

I Union, Intersection, Difference: Set operations applied to sets of
tuples from two relations R and S

I Imagine two tables, for links leaving from URL’s in Europe and
North America

I Intersection: compute set of URL’s that have incoming links from
both Europe and North America

I Natural Join: Generate new table by joining tuples from two
tables R and S when agreeing on attributes shared by two tables,
yielding a new table R ./ S

I Imagine two tables of links, one with links from Europe to Asia
LEA, and one from Asia to North America LAN

I Join two URL pairs when ’To’ from first table agrees with ’From’
from second table

I This yields table LEA ./ LAN with three columns
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RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

I Map: For each tuple t from both R and S generate key-value pair
(t, t)

I Reduce: After grouping, there will be two kinds of pairs: either
(t, [t]) or (t, [t, t])

I For Union, output everything
I For Intersection, output (t, t) only for (t, [t, t])

Difference

I Map: For a tuple t in R, generate key-value pair (t,R), and for
tuple t in S generate key-value pair (t, S) (use single bits for
distinguishing R, S)

I Reduce: After grouping, three cases: (t, [R]), (t, [R, S]), (t, [S]).
Output (t, t) only for (t, [R])
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RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A,B) ./ S(B,C)

I Map: For each tuple t = (a, b) from R, generate key-value pair
(b, (R, a)). For each tuple (b, c) from S, generate (b, (S, c)).

I Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

I Construct all pairs of values where first component is like (R, a)
and second component is like (S, c), yielding triples
(b, (R, a), (S, c))

I Turn triples into triples (a, b, c) being output

General Natural Join
Do like for relations with two attributes, by considering

I A attributes from R not in S

I B attributes both in R, S

I C attributes from S not in R
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MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (mij) 2 Rm⇥n,N = (njl) 2 Rn⇥k, for (very) large m, n, k.
We would like to compute MN 2 Rm⇥k where (MN)il =

Pn
j=1 mijnjl

I Map:
I For each mij, generate all possible key-value pairs ((i, l), (M, j,mij)
I For each njl, generate all possible key-value pairs ((i, l), (N, j, njl)
I Thereby, M and N are stored by means of single bit

I Reduce: Need to work on list of values of keys (i, l):
I Sort values [which are either (M, j,mij) or (N, j, njl)] by j
I After sorting, multiply each of two consecutive values mij, njl
I Add up all the products

Remark: There are more efficient ways to multiply matrices using
Natural Join (2.3.9)
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I Thereby, M and N are stored by means of single bit

I Reduce: Need to work on list of values of keys (i, l):
I Sort values [which are either (M, j,mij) or (N, j, njl)] by j
I After sorting, multiply each of two consecutive values mij, njl
I Add up all the products

Remark: There are more efficient ways to multiply matrices using
Natural Join (2.3.9)
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MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 2.1–2.3

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Map Reduce / Workflow Systems II”
I See Mining of Massive Datasets 2.4–2.6


