Social Networks

Alexander Schönhuth

Bielefeld University
June 30, 2022

Learning Goals Today / Overview

- Intro: Social Networks are Graphs
- How to Cluster Social Networks into Groups
- Non-overlapping communities: the Girvan-Newman Algorithm
- Overlapping communities: the Graph Affiliation Model
- Direct Discovery of Overlapping Communities

Social Networks as Graphs

Social Networks: Introduction

BASIC EXAMPLES

- Facebook, Twitter, Google+

Defining Properties

- Collection of entities participating in network
- Usually people, but other entities conceivable
- There is a relationship between the entities
- Being friends is frequent relationship
- Relationship can be of 0-1 type, or weighted
- Assumption of nonrandomness or locality
- Hard to formalize, intuition is that relationships tend to cluster
- If entity A is related with both B and C, B and C are related with larger probability

Social Network Graphs: Entities and Relationships

Adopted from mmds.org

- Entities: Nodes A to G
- Relationships: Represented by edges between nodes
- Example: A is "friends" with B and C

Social Network Graphs: Locality

Adopted from mmds.org

- Locality: / $\binom{7}{2}$
- There are 9 out of 21 possible edges: $\frac{9}{21}=0.429$
- Given nodes X, Y, Z such that there are edges $(X, Y),(Y, Z)$, random occurrence of (X, Z) is $\frac{7}{19}=0.368$
- However, across all pairs of existing edges $(X, Y),(Y, Z)$, probability that (X, Z) exists is $\frac{9}{16}=0.563$
Network exhibits locality

Social Networks: Examples

- Telephone Networks:
- Nodes are phone numbers, edges exist if one number called another
- Edge weights: Number of calls (within certain period of time)
- Communities: Groups of friends, members of a club, people working at same company
- Email Networks:
- Nodes are email addresses, edges indicate exchange of emails
- Edge directionality may matter, so graph with directed edges
- Communities: Similar to telephone networks

Social Networks: Examples

- Collaboration Networks:
- Nodes e.g. represent authors, edges indicate working on same document
- Alternatively: nodes represent documents, edges indicate that identical author contributed
- Communities: Groups interested in / working on same subjects; documents sharing related content
- Other:
- Information networks: Documents, web graphs, patents
- Infrastructure networks: Roads, planes, water pipes, power grids
- Biological networks: Genes, proteins, drugs
- Product co-purchasing networks: E.g. Groupon

Several Types of Nodes

Adopted from mmds.org
Examples

- Figure: Users (U) put tags (T) on web pages (W): tri-partite network
- Put documents and authors into one bi-partite network

Clustering Social Networks

Clustering Social Networks: Introduction

- An important aspect of social networks are communities
- Communities reveal themselves as groups of nodes that share unusually many edges
- Clustering social networks relates to the discovery of such communities

COMMUNITIES

Differently Colored Communities in Social Network

Clustered Network

Adopted from mmds.org

Distance Measures in Social Networks

- Standard clustering techniques work with distance measures
- Distance measures are not obvious to define in social networks
- Let $x, y \in V$ be two nodes in a social network $G=(V, E)$. The measure

$$
d(x, y)= \begin{cases}0 & (x, y) \in E \\ 1 & (x, y) \notin E\end{cases}
$$

violates the triangle inequality, hence is no distance measure

- Exchanging 0 with 1 , and 1 with ∞ does not help
- Other binary-valued measures (e.g. 1 and 1.5) agree with triangle inequality
- But: Additional issues apply

Social Networks: Clustering Issues

Communities: A-B-C and D-E-F-G
Adopted from mmds.org

- Hierarchical Clustering: Randomly picks closest nodes/clusters
- Distance between clusters: distance between closest points
- As soon as clusters are joined on B and D, clusters not as desired
- Summary: Standard clustering techniques difficult/impossible to sensibly implement

Betweenness

Idea: Identify edges that are least likely to be within community
Definition [BETWEENNESS]
The betweenness of an edge (a, b) is

- the number of pairs of nodes (x, y) such that (a, b) makes part of the shortest path leading from x to y
- If for (x, y) there are several shortest paths, (a, b) is credited the fraction of shortest paths leading through (a, b) when computing its betweenness

Betweenness

Telephone network:
Links between communities have great betweenness

Adopted from mmds.org

Explanation

- High betweenness means that (a, b) is a bottleneck for shortest paths
- If nodes (a, b) lie within community, there are too many options for shortest paths to circumvent (a, b) (so (a, b) gets credited only small fractions)

Betweenness: Example

Adopted from mmds.org

- (B, D) has the greatest betweenness, 12
- It is on any shortest path between A, B, C and D, E, F, G
- (D, F) has betweenness 4
- It lies on all shortest paths between A, B, C, D and F

The Girvan-Newman Algorithm

Calculating Betweenness

Algorithmic Principle

- Visit each node X once
- Compute shortest paths from X to any other node Y
- To visit nodes Y from X, perform breadth-first search (BFS)

Social Network; consider BFS from E Adopted from mmds.org

The Girvan-Newman Algorithm

Calculating Betweenness

Algorithmic Principle

- Visit each node X once
- Compute shortest paths from X to any other node Y
- To visit nodes Y from X, perform breadth-first search (BFS)

BFS starting from E on social network from slide before Adopted from mmds.org

The Girvan-Newman Algorithm

Calculating Betweenness

Intuition / Notation

- Length of shortest path from X to Y : level of BFS starting at X
- Edges within BFS level cannot be part of shortest paths from X
- Edges between different levels are referred to as DAG (directed acyclic graph) edges
- DAG edges are on at least one shortest path leaving from X

The Girvan-Newman Algorithm

Calculating Betweenness

Level 1

Adopted from mmds.org

Example Notation

- Solid edges $=$ DAG edges: e.g. $(D, B),(E, F)$
- Dashed edges = within level: e.g. $(D, F),(A, C)$
- For DAG edge (Y, Z) where Y is closer to root X than Z :
- Y is said to be the parent
- Z is said to be the child

The Girvan-Newman Algorithm
 Calculating Betweenness

Two Stages

- Labeling: For each node, assign number of shortest paths from root to that node
- Proceed from root to leaves in BFS order
- Crediting: For each edge, compute contribution of shortest paths from root to betweenness of that edge
- Need to compute credits for nodes as well
- Proceed from leaves to root, bottom-up

The Girvan-Newman Algorithm

Calculating Betweenness

Level 1

Level 3

Adopted from mmds.org

Labeling NODES

- Label each node by the number of shortest path to the root
- Start by labeling the root with 1
- Top-down, label each node by the sum of labels of each parents

The Girvan-Newman Algorithm

Calculating Betweenness

EXAMPLE LABELING

- Label the root E with 1
- Level 1: Each D and F have only E as parent; label both with 1
- Level 2:
- B has only D as parent, label with 1
- G has parents D and F, label with 2
- Level 3: Both A, C have only B as parent, so both are labeled with 1

The Girvan-Newman Algorithm

Calculating Betweenness

Crediting Nodes

- Compute fraction of shortest paths from root passing through node
- Credit each leaf with 1
- If several shortest paths run to leaf, fractions add up to 1
- Each non-leaf node v gets credit

$$
\begin{equation*}
1+\sum_{e \in \mathcal{D}(v)} c(e) \tag{1}
\end{equation*}
$$

where $\mathcal{D}(v)$ are the DAG edges leaving from v, and $c(e)$ is the credit of an edge e

How to credit edges?

The Girvan-Newman Algorithm

Calculating Betweenness
Crediting Edges

- Let $u_{j}, j=1, \ldots, k$ be the parents of w; so $\left(u_{j}, w\right)$ are the DAG edges entering w
- Let $N_{j}, j=1, \ldots, k$ be the number of shortest paths from root running through edges $\left(u_{j}, w\right)$
- Recall: N_{j} agrees with the label of u_{j}, the number of shortest paths from root to $u_{j} \ldots$
- ... because every shortest path from root to u_{j} is a shortest path from root to w
- Let $c(w)$ be the credit of w
- We compute the credit of $\left(u_{i}, w\right)$ as

$$
\begin{equation*}
c\left(u_{i}, w\right):=c(w) \times \frac{N_{i}}{\sum_{j=1}^{k} N_{j}} \tag{2}
\end{equation*}
$$

The Girvan-Newman Algorithm

Calculating Betweenness

Example Crediting

- Level 3 Nodes: Credit each of nodes A and C with 1
- Level 2-3 Edges: Both A and C have only one parent, so full credit 1 is assigned to both (B, A) and (B, C)

Crediting Nodes and Edges in Level 3 and 2
Adopted from mmds.org

The Girvan-Newman Algorithm

Calculating Betweenness

Example Crediting

Level 2 Nodes:

- G is a leaf, so gets credit 1
- B is not a leaf, so gets credit $1+$ sum of credits 1 of DAG edges $(B, A),(B, C)$ leaving from it: credit 3 overall
- Intuitively, credit 3 for B refers to all shortest paths from E to A, B, C going through B.
Crediting Nodes and Edges in Level 3 and 2
Adopted from mmds.org

The Girvan-Newman Algorithm

Calculating Betweenness

Crediting Nodes and Edges
Adopted from mmds.org

Example Crediting

Level 1-2 Edges:

- B has only one parent, D, so the edge (D, B) gets all of B 's credit
- $(D, G),(F, G)$: Both D, F have label (not credit!) 1. So we credit both $(D, G),(F, G)$ with $1 /(1+1)=0.5$
- Example: If labels of D and F had been 3 and 5 , the credit of (D, G) would be $3 /(3+5)=3 / 8$ and that of (F, G) would be $5 / 8$.

The Girvan-Newman Algorithm

CAlculating Betweenness

Example Crediting

Crediting Nodes and Edges
Adopted from mmds.org

Level 1 Nodes / Edges:

- D gets credit $1+$ credits of $(D, B),(D, G)=$ credit 4.5 overall
- F gets credit $1+$ credit of $(F, G)=$ credit 1.5 overall
- Edges $(E, D),(E, F)$ receive credits of D, F respectively, because D, F each have only one parent

Summary: Credit on each edge is contribution to betweenness of that edge to shortest paths from E

The Girvan-Newman Algorithm

SUMMARY

Completing the Algorithm

- Repeat the calculation illustrated for E for every other node
- Sum up the contributions for each edge across different roots
- Divide each edge weight by 2: each shortest path is counted twice, with each of its end points as root

Betweenness Scores
Adopted from mmds.org

Finding Communities with Betweenness

Betweenness Scores
Adopted from mmds. org

Computing Communities: Principle

- Remove edges in decreasing order of betweenness
- Stop at reasonably chosen threshold
- Communities are the resulting connected components

Finding Communities with Betweenness

Betweenness Scores
Adopted from mmds.org
Computing Communities: Example Threshold 4

- First, remove (B, D) : communities $\{A, B, C\},\{D, E, F, G\}$
- Second, remove $(A, B),(B, C)$: communities $\{A, C\},\{B\},\{D, E, F, G\}$
- Third, remove $(D, E),(D, G)$: communities $\{A, C\},\{B\},\{D, E, F, G\}$
- Last, remove (D, F) : communities $\{A, C\},\{B\},\{D\},\{E, F, G\}$

Finding Communities with Betweenness

Computing Communities: Example Threshold 4

- First, remove (B, D) : communities $\{A, B, C\},\{D, E, F, G\}$
- Second, remove $(A, B),(B, C)$: communities $\{A, C\},\{B\},\{D, E, F, G\}$
- Third, remove $(D, E),(D, G)$: communities $\{A, C\},\{B\},\{D, E, F, G\}$
- Last, remove (D, F) : communities $\{A, C\},\{B\},\{D\},\{E, F, G\}$

Final Communities
Adopted from mmds.org

The Graph Affiliation Model

Overlapping Communities

- Observation: Communities in social networks can overlap
- Graph partitioning does not help in these cases
- Would like to have a statistical interpretation of network data

Nonoverlapping versus Overlapping COMMUNITIES

Left: Nonoverlapping communities Right: Overlapping communities

Adopted from mmds.org

- Communities may overlap or not
- Issue: How to determine communities correctly?

Affiliation Graph Model: Introduction

Networks and their adjacency matrices
Adopted from mmds.org

- Left: No overlap, adjacency matrix sparse across communities
- Middle: Loose overlap, adjacency matrix less sparse in shared part
- Right: Tight overlap, adjacency matrix dense in shared part

Community Discovery: Goal

Revealing (overlapping) communities
Adopted from mmds.org

- Goal: Discover communities correctly
- Regardless of whether they overlap or not Determine the statistically most likely community structure

Affiliation Graph Model: Introduction

- Issue: Statistical control over community structure of a network
- Idea: Design generative probability distribution
- Given a number of nodes, this generative distribution generates edges
- The generative distribution represents a particular community structure
- The distribution knows about nodes belonging to communities
- It generates more edges within communities
- It generates less edges between communities

Affiliation Graph Model: Introduction

- The generative distribution represents community structures
- The distribution knows about nodes belonging to communities
- It generates more edges within communities
- It generates less edges between communities

Distribution representing a community structure generating network
Adopted from mmds.org

Affiliation Graph Model: Introduction

Distribution representing a community structure (left) generating network (right) Adopted from mmds.org

- We can generate networks when knowing community structure
- But: We would like to determine the community structure when knowing the network

Isn't that exactly the opposite?

Generative Distributions

We can do this: generating network from distribution... Adopted from mmds.org

...but we want this: inferring distribution from network
Adopted from mmds.org

Generative Distributions: Maximum Likelihood Inference

We want to infer distribution from network

> Adopted from mmds.org

Maximum Likelihood Estimation

- Let Θ be a parameterized class of probability distributions that generate networks
- We identify the different distributions with the different parameterizations Formally not 100% correct, but doesn't matter here
- Let $\mathbf{P}(N \mid \theta)$ be the probability that distribution $\theta \in \Theta$ generates network N

Generative Distributions: Maximum Likelihood Inference

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation

- Let $\mathbf{P}(N \mid \theta)$ be the probability that distribution $\theta \in \Theta$ generates network N
- Maximum likelihood estimation: Determine distribution $\hat{\theta}$ that generated N with greatest likelihood:

$$
\begin{equation*}
\hat{\theta}:=\underset{\theta \in \Theta}{\arg \max } \mathbf{P}(N \mid \theta) \tag{3}
\end{equation*}
$$

UNIVERSIIATTMis computes most reasonable distribution $\hat{\theta}$ for network N

Affiliation Graph Model: Definition I

- An AGM θ generates a network $N=(V, E)$ by adding edges E to a given set of nodes V
- For $u, v \in V$, edge (u, v) is generated with probability $\mathbf{P}_{\theta}((u, v))$
- $\mathbf{P}_{\theta}((u, v))$ depends on the parameters θ
- Recall that θ specifies community structure

So, what exactly is θ supposed to be?

Affiliation Graph Model: Parameters

- \mathcal{C}, as a set of communities
- $M \in\{0,1\}^{\mathcal{C} \times V}$, specifying assignment of nodes $v \in V$ to communities $C \in \mathcal{C}$, where

$$
M_{C, v}= \begin{cases}1 & v \text { belongs to } C \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

- M specifies "affiliations" of nodes $v \in V$
- Note that one can vary \mathcal{C}, as a parameter, but not V
- $\left(p_{C}\right)_{C \in \mathcal{C}}$ as probabilities to generate edges (u, v) because $u, v \in C$
- Summary: A particular AGM θ corresponds to

$$
\begin{equation*}
\theta=\left(\mathcal{C}, M,\left(p_{C}\right)_{C \in \mathcal{C}}\right) \tag{5}
\end{equation*}
$$

Affiliation Graph Model: $\mathbf{P}_{\theta}((u, v))$

Several C containing both u, v

- Let $M_{u}, M_{v} \subset \mathcal{C}$ be the subsets of communities that contain u and v, respectively
- Existence of communities that contain both u, v means

$$
M_{u} \cap M_{v} \neq \emptyset
$$

- Memberships in different communities have no influence on each other
- That is, we assume statistical independence

Affiliation Graph Model: $\mathbf{P}_{\theta}((u, v))$

Several C containing both u, v

- Statistical independence is expressed by

$$
\prod_{C \in M_{u} \cap M_{v}}\left(1-p_{C}\right)
$$

as probability of no edge (u, v) in any community $C \in M_{u} \cap M_{v}$

- Hence, the probability to generate (u, v) is

$$
\begin{equation*}
1-\prod_{C \in M_{u} \cap M_{v}}\left(1-p_{C}\right) \tag{6}
\end{equation*}
$$

Done? No: What about $M_{u} \cap M_{v}=\emptyset$?

Affiliation Graph Model: $\mathbf{P}_{\theta}((u, v))$

No C containing both u, v

- For $M_{u} \cap M_{v}=\emptyset$, computing (6) yields (empty product is 1)

$$
1-\prod_{C \in \emptyset}\left(1-p_{C}\right)=1-1=0
$$

- No edges across communities makes no sense
- Let $\epsilon>0$ be small; we generate an edge (u, v) with probability

$$
\mathbf{P}_{\theta}((u, v))=\epsilon \quad \text { if } \quad M_{u} \cap M_{v}=\emptyset
$$

Affiliation Graph Model: $\mathbf{P}_{\theta}((u, v))$

Affiliation Graph Model (AGM)

- An edge (u, v) is generated with probability

$$
\mathbf{P}_{\theta}((u, v))= \begin{cases}1-\prod_{C \in M_{u} \cap M_{v}}\left(1-p_{C}\right) & M_{u} \cap M_{v} \neq \emptyset \tag{7}\\ \epsilon & M_{u} \cap M_{v}=\emptyset\end{cases}
$$

- Edges (u, v) are generated independently from one another
- Overall: The probability $\mathbf{P}_{\theta}(E)$ to generate edges E given AGM θ computes as

$$
\begin{equation*}
\mathbf{P}_{\theta}(E)=\prod_{(u, v) \in E} \mathbf{P}_{\theta}((u, v)) \times \prod_{(u, v) \notin E} 1-\mathbf{P}_{\theta}((u, v)) \tag{8}
\end{equation*}
$$

where $\mathbf{P}_{\theta}((u, v))$ are computed following (7), with $\theta=\left(\mathcal{C}, M, p_{C}\right)$ determining p_{C} and M_{u}, M_{v} and so on.

Affiliation Graph Model: Overall Probability

Affiliation Graph Model (AGM)

- The probability $\mathbf{P}_{\theta}(E)$ to generate E given θ is

$$
\begin{equation*}
\mathbf{P}_{\theta}(E)=\prod_{(u, v) \in E} \mathbf{P}_{\theta}((u, v)) \times \prod_{(u, v) \notin E} 1-\mathbf{P}_{\theta}((u, v)) \tag{9}
\end{equation*}
$$

- Reminder: For a given network $N=(V, E)$, the goal is to determine

$$
\hat{\theta}:=\underset{\theta \in \Theta}{\arg \max } \mathbf{P}_{\theta}(E)
$$

- That is, we need to vary $\theta=\left(\mathcal{C}, M, p_{C}\right)$ until $\mathbf{P}_{\theta}(E)$ is maximal

$$
\text { How to systematically vary } \theta=\left(\mathcal{C}, M, p_{C}\right) ?
$$

Computing the MLE $\hat{\theta}$

ISSUES

- Search space of combinations of
- Communities \mathcal{C},
- Assignments of nodes to communities M, and
- Probabilities p_{C} for communities
tends to be huge
- Concise formulas of (9) for $\mathbf{P}_{\theta}(E)$ as function of θ too difficult
- Analytical solution for determining $\hat{\theta}:=\arg \max _{\theta \in \Theta} \mathbf{P}_{\theta}(E)$ not available
- Moreover, parameters are both discrete (\mathcal{C}, M) and continuous $\left(\left(p_{\mathcal{C}}\right)_{C \in \mathcal{C}}\right)$

Computing the MLE $\hat{\theta}$

Approach

1. Pick initial set of parameters θ_{0}
2. Vary θ such that $\mathbf{P}_{\theta}(E)$ iteratively increases
3. Vary \mathcal{C} or M first

Partial derivates of $\mathbf{P}_{\theta}(E)$ wrt. p_{C} computable on fixed \mathcal{C}, M
4. Determine optimal $\left(p_{C}\right)_{C \in \mathcal{C}}$, e.g. by gradient descent
5. Keep change if $\mathbf{P}_{\theta}(E)$ has increased, discard otherwise

Computing the MLE $\hat{\theta}$

Iterative variations of \mathcal{C}, M

- Varying M:
- Delete node from community, i.e. for $M_{C, v}=1$, set $M_{C, v}=0$
- Add node to community, i.e. for $M_{C, v}=0$, set $M_{C, v}=1$
- Varying \mathcal{C} :
- Merge two communities
- Split community
- Delete community
- Add new community, with initial random selection of members

Computing the MLE $\hat{\theta}$

Soft Community Membership

- Instead of $M_{C, v} \in\{0,1\}$, allow any real-numbered $M_{C, v} \geq 0$
- For (u, v) to be generated because of $u, v \in C$, let

$$
\begin{equation*}
\mathbf{P}_{\theta}((u, v))=1-e^{-M_{C, u} M_{\mathcal{C}, v}} \tag{10}
\end{equation*}
$$

be the individual probability

- Proceeding exactly as before, we obtain

$$
\begin{equation*}
\mathbf{P}_{\theta}(E)=\prod_{(u, v) \in E}\left(1-e^{-\sum_{\mathrm{C}} M_{\mathcal{C}, u} M_{\mathcal{C}, v}}\right) \prod_{(u, v) \notin E} e^{-\sum_{\mathrm{C}} M_{\mathrm{C}, u} M_{\mathcal{C}, v}} \tag{11}
\end{equation*}
$$

Computing the MLE $\hat{\theta}$

Soft Community Membership

- Probability for edges E :

$$
\begin{equation*}
\mathbf{P}_{\theta}(E)=\prod_{(u, v) \in E}\left(1-e^{-\sum_{\mathrm{C}} M_{\mathcal{C}, u} M_{\mathcal{C}, v}}\right) \prod_{(u, v) \notin E} e^{-\sum_{\mathrm{C}} M_{\mathcal{C}, u} M_{\mathcal{C}, v}} \tag{12}
\end{equation*}
$$

- On fixed communities, include M in gradient descent (or related) optimization step
- Advantages:
- Only one gradient descent run necessary
- Less prone to get stuck in unfavorable local optima
- If necessary, add or delete communities, and re-run

Direct Discovery of Overlapping Communities

INTRODUCTION

- Popular idea: Determine communities as (induced) subgraphs of a certain type
- Subgraphs should contain unusually large amount of edges
- Subgraphs are allowed to overlap
- Will treat two types briefly here:
- Cliques
- Complete bipartite subgraphs

Finding Cliques

Definition [Induced Subgraph]
Let $G=(V, E)$ be a graph. A subgraph $C=\left(V^{\prime} \subset V, E^{\prime} \subset E\right)$ is induced iff

$$
\left(v^{\prime}, w^{\prime}\right) \in E \text { implies } \quad\left(v^{\prime}, w^{\prime}\right) \in E^{\prime}
$$

for any $v^{\prime}, w^{\prime} \in V^{\prime}$.
Definition [Clique]
Let $G=(V, E)$ be a graph.

- An induced subgraph $C=\left(V^{\prime}, E^{\prime}\right)$ is called a clique iff any pair of nodes in C is connected by an edge.
- A clique $C=\left(V^{\prime}, E^{\prime}\right)$ is maximal iff extending the clique by any node and its edges implies that the clique property no longer holds.

Communities as Cliques

- Possible idea: Determine communities as maximal cliques
- Caveat: The number of maximal cliques in a graph may be exponential in the number of nodes
- So, listing all maximal cliques is a computationally demanding problem
- Nevertheless, identifying communities as clique like arrangements is popular

Complete Bipartite Graphs

Definition [(Complete) Bipartite Graphs]

A graph $G=(V, E)$ with vertices V and edges E is referred to as bipartite iff

- there are $V_{1}, V_{2} \subset V$ such that

$$
V=V_{1} \dot{\cup} V_{2} \quad \text { and } \quad E \subset\left(V_{1} \times V_{2}\right)
$$

- A bipartite graph $G=(V, E)$ is complete iff

$$
V=V_{1} \cup V_{2} \quad \text { and } \quad E=\left(V_{1} \times V_{2}\right)
$$

that is iff each node from V_{1} is connected with each node from V_{2}

- A complete bipartite graph where $\left|V_{1}\right|=s,\left|V_{2}\right|=t$ is referred to as $K_{s, t}$
- A complete bipartite graph is also referred to as biclique

Complete Bipartite Graphs and Communities

- Strategy: Seek to discover all sufficiently large bicliques
- Treat them as "nuclei" (or seeds) of communities
- Theoretical Advantage over Cliques: While it is not possible to guarantee the existence of large cliques for graphs with many edges, one can guarantee the existence of large bicliques

Finding Complete Bipartite Graphs

Frequent Itemset Mining Problem

- Let $G=(V, E)$ on $V=V_{1} \dot{\cup} V_{2}$ be a (large) bipartite graph
- Items are nodes from V_{1}
- Baskets are nodes from V_{2}
- Items in baskets are nodes from V_{1} connected to basket node
- $K_{s, t}$ in G is itemset of size s that appears in t baskets
- So mining for frequent itemsets at threshold t dicovers all $K_{s, t}$

General / Further Reading

Literature

- Mining Massive Datasets, Sections 10.1, 10.2, 10.3, 10.5 http://infolab.stanford.edu/~ullman/mmds/ ch10.pdf
- Next lecture: "Web Advertisements": sections 8.1-8.4 in Mining of Massive Datasets

