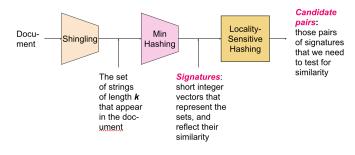
Finding Similar Items II

Alexander Schönhuth

Bielefeld University April 21, 2022

SUMMARY OF CURRENT STATUS



From mmds.org

- ► *Shingling:* turning text files into sets 🖾 Done!
- ► *Minhashing*: computing similarity for large sets [®] Done!
- ► Locality Sensitive Hashing: avoids $O(N^2)$ comparisons by determining candidate pairs \bowtie today!

CURRENT STATUS: ISSUES STILL REMAINING

- Minhashing enabled to compute similarity between two sets very fast
- ► Shingling enabled to turn documents into sets such that minhashing could be applied
- ▶ But if number of items N is too large, $O(N^2)$ similarity computations are infeasible, even using minhashing
- Idea: Browse through items and determine candidate pairs
 - Number of candidate pairs is much smaller than $O(N^2)$
 - One performs minhashing only for candidate pairs
 - Candidate pairs can be determined with a very fast procedure
- ► Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

CURRENT STATUS: ISSUES STILL REMAINING

- Minhashing enabled to compute similarity between two sets very fast
- ► Shingling enabled to turn documents into sets such that minhashing could be applied
- ▶ But if number of items N is too large, $O(N^2)$ similarity computations are infeasible, even using minhashing
- ► *Idea*: Browse through items and determine *candidate pairs*:
 - Number of candidate pairs is much smaller than $O(N^2)$
 - ► One performs minhashing only for candidate pairs
 - ► Candidate pairs can be determined with a very fast procedure
- ► Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

CURRENT STATUS: ISSUES STILL REMAINING

- Minhashing enabled to compute similarity between two sets very fast
- ► Shingling enabled to turn documents into sets such that minhashing could be applied
- ▶ But if number of items N is too large, $O(N^2)$ similarity computations are infeasible, even using minhashing
- ► *Idea*: Browse through items and determine *candidate pairs*:
 - Number of candidate pairs is much smaller than $O(N^2)$
 - ► One performs minhashing only for candidate pairs
 - ► Candidate pairs can be determined with a very fast procedure
- ► Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

LEARNING GOALS TODAY

- ► Understand the technique of *Locality Sensitive Hashing (LSH)*
- ► Understand the theory supporting it

Locality Sensitive Hashing

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_1 , h_2 , and four sets S_1 , S_2 , S_3 , S_4

- ► Here: m = 5, n = 2
- ► Originally: each set is from $\{0,1\}^m$ (a bitvector of length m)
- Now: each set is from $\{0, ..., m-1\}^n$
- ► Much reduced representation, because *n* << *m*

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_1 , h_2 , and four sets S_1 , S_2 , S_3 , S_4

- ► Here: m = 5, n = 2
- ► Originally: each set is from $\{0,1\}^m$ (a bitvector of length m)
- Now: each set is from $\{0, ..., m-1\}^n$
- ► Much reduced representation, because *n* << *m*

Idea:

- ► Hash items (columns in *SIG*) several times (*b* times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- ► *Runtime*: Hashing all columns is *O*(*N*), examining buckets requires little time

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_1, h_2 , and four sets S_1, S_2, S_3, S_4

- ► Here: m = 5, n = 2
- ► Originally: each set is from $\{0,1\}^m$ (a bitvector of length m)
- Now: each set is from $\{0, ..., m-1\}^n$
- ► Much reduced representation, because *n* << *m*

Idea:

- ► Hash items (columns in *SIG*) several times (*b* times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is O(N), examining buckets requires little time

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_1 , h_2 , and four sets S_1 , S_2 , S_3 , S_4

- ► Here: m = 5, n = 2
- ► Originally: each set is from $\{0,1\}^m$ (a bitvector of length m)
- Now: each set is from $\{0, ..., m-1\}^n$
- ► Much reduced representation, because *n* << *m*

Idea:

- ► Hash items (columns in *SIG*) several times (*b* times)
- ► Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is O(N), examining buckets requires little time

Motivation:

- ► *False Positive:* dissimilar pair hashing to the same bucket
- ► *False Negative:* similar pair never hashing to the same bucket
- Motivation: limit both false positives and negatives

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_1 , h_2 , and four sets S_1 , S_2 , S_3 , S_4

- ► Here: m = 5, n = 2
- ► Originally: each set is from $\{0,1\}^m$ (a bitvector of length m)
- Now: each set is from $\{0, ..., m-1\}^n$
- ► Much reduced representation, because *n* << *m*

Idea:

- ► Hash items (columns in *SIG*) several times (*b* times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is O(N), examining buckets requires little time

Motivation:

- ► *False Positive:* dissimilar pair hashing to the same bucket
- ► *False Negative:* similar pair never hashing to the same bucket
- ► *Motivation:* limit both false positives and negatives

LOCALITY SENSITIVE HASHING: BANDING TECHNIQUE

band 1	 1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	
band 2		
band 3		
band 4		

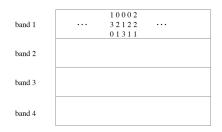
- ▶ Divide rows of signature matrix into *b* bands of *r* rows each
- For each band, a hash function hashes *r* integers to buckets
- Number of buckets is large to avoid collisions
- Candidate pair: a pair of columns hashed to the same bucket, in any band

LOCALITY SENSITIVE HASHING: BANDING TECHNIQUE

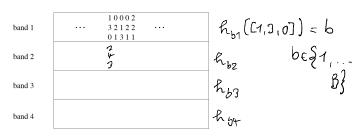
band 1	•••	1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	
band 2			
band 3			
band 4			

- ▶ Divide rows of signature matrix into *b* bands of *r* rows each
- ► For each band, a hash function hashes *r* integers to buckets
- ► Number of buckets is large to avoid collisions
- Candidate pair: a pair of columns hashed to the same bucket, in any band

LOCALITY SENSITIVE HASHING: BANDING TECHNIQUE



- ▶ Divide rows of signature matrix into *b* bands of *r* rows each
- ► For each band, a hash function hashes *r* integers to buckets
- Number of buckets is large to avoid collisions
- ► Candidate pair: a pair of columns hashed to the same bucket, in any band



- ▶ The columns showing [0, 2, 1] in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
 - apart from collisions occurring * which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

band 1	 1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	
band 2		
band 3		
band 4		

- ▶ The columns showing [0, 2, 1] in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
 - apart from collisions occurring which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

band 1	•••	1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	
band 2			
band 3			
band 4			

- ▶ The columns showing [0, 2, 1] in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
 - ► apart from collisions occurring which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

band 1	 1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	
band 2		
band 3		
band 4		

- ightharpoonup The columns showing [0,2,1] in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
 - ► apart from collisions occurring which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

BANDING TECHNIQUE: THEOREM

Let SIG be a signature matrix grouped into

- ▶ b bands of
- ightharpoonup r rows each

and consider

ightharpoonup a pair of columns of Jaccard similarity s

THEOREM [LSH CANDIDATE PAIR]:

The probability that the pair of columns becomes a candidate pair is

$$1 - (1 - s^r)^b \tag{1}$$

Proof.

Consider a pair of columns whose sets have Jaccard similarity *s*.

► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

Proof.

Consider a pair of columns whose sets have Jaccard similarity s.

► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

- ightharpoonup agree in all rows of one band is s^r ,
- bullet disagree in at least one of the rows in a band $1 s^r$
- disagree in at least one row in each band is $(1 s^r)^b$
- ▶ agree in all rows for at least one band is $1 (1 s^r)^b$

PROOF.

Consider a pair of columns whose sets have Jaccard similarity s.

► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

- ightharpoonup agree in all rows of one band is s^r ,
- disagree in at least one of the rows in a band $1 s^r$
- disagree in at least one row in each band is $(1 s^r)^b$
- ▶ agree in all rows for at least one band is $1 (1 s^r)^b$

Proof.

Consider a pair of columns whose sets have Jaccard similarity s.

► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

- ightharpoonup agree in all rows of one band is s^r ,
- disagree in at least one of the rows in a band $1 s^r$
- ▶ disagree in at least one row in each band is $(1 s^r)^b$
- ▶ agree in all rows for at least one band is $1 (1 s^r)^b$

PROOF.

Consider a pair of columns whose sets have Jaccard similarity s.

► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

- ightharpoonup agree in all rows of one band is s^r ,
- disagree in at least one of the rows in a band $1 s^r$
- ▶ disagree in at least one row in each band is $(1 s^r)^b$
- ▶ agree in all rows for at least one band is $1 (1 s^r)^b$

Proof.

Consider a pair of columns whose sets have Jaccard similarity *s*.

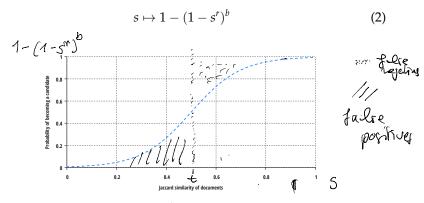
► Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability *s*

- ightharpoonup agree in all rows of one band is s^r ,
- disagree in at least one of the rows in a band $1 s^r$
- ▶ disagree in at least one row in each band is $(1 s^r)^b$
- ▶ agree in all rows for at least one band is $1 (1 s^r)^b$

BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

For given b and r, the S-curve is defined by the prescription



BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

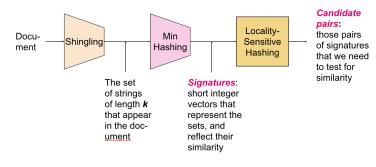
For given *b* and *r*, the *S-curve* is defined by the prescription

$$s \mapsto 1 - (1 - s^r)^b \tag{3}$$

$$\begin{array}{ccc} s & 1 - (1 - s^r)^b \\ .2 & .006 \\ .3 & .047 \\ .4 & .186 \\ .5 & .470 \\ .6 & .802 \\ .7 & .975 \\ .8 & .9996 \end{array}$$

Table: Values for S-curve with b = 20 and r = 5

FINDING SIMILAR DOCUMENTS: OVERALL WORKFLOW



From mmds.org

- Shingling: Done!
- ► Minhashing: Done!
- ► Locality-Sensitive Hashing: Done!

- ightharpoonup One needs to determine b, r
- One needs to determine threshold *t*:
 - \triangleright $s \ge t$: candidate pair
 - ightharpoonup s < t: no candidate pair
- bands times rows is number of rows of signature matrix s br = n
- ▶ *t* corresponds with point of steepest rise on S-curve approximately $(1/b)^{(1/r)}$

- ightharpoonup One needs to determine b, r
- ▶ One needs to determine threshold *t*:
 - ▶ $s \ge t$: candidate pair
 - s < t: no candidate pair
- bands times rows is number of rows of signature matrix br = n
- ▶ *t* corresponds with point of steepest rise on S-curve approximately $(1/b)^{(1/r)}$

- ightharpoonup One needs to determine b, r
- ▶ One needs to determine threshold *t*:
 - ▶ $s \ge t$: candidate pair
 - s < t: no candidate pair
- ▶ *t* corresponds with point of steepest rise on S-curve approximately $(1/b)^{(1/r)}$

- ightharpoonup One needs to determine b, r
- ▶ One needs to determine threshold *t*:
 - ▶ $s \ge t$: candidate pair
 - s < t: no candidate pair
- ▶ *t* corresponds with point of steepest rise on S-curve: approximately $(1/b)^{(1/r)}$

FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that
- $t \approx (1/b)^{1/r}$ is large
- Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- ► Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t. b. r such that $t \approx (1/b)^{1/r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that
- $t \approx (1/b)^{1/t}$ is large
- Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- ightharpoonup Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- ▶ If avoiding false positives, or speed is important, choose t, b, r such that $t \approx (1/b)^{1/r}$ is large
- ▶ Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- ▶ Pick n hash functions
- ► Compute minhash signatures as per earlier algorithm

- ightharpoonup Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- ▶ If avoiding false positives, or speed is important, choose t, b, r such that $t \approx (1/b)^{1/r}$ is large
- ▶ Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- ► Compute minhash signatures as per earlier algorithm

- ightharpoonup Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- ▶ If avoiding false positives, or speed is important, choose t, b, r such that $t \approx (1/b)^{1/r}$ is large
- ▶ Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- ► Compute minhash signatures as per earlier algorithm

- ightharpoonup Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- ▶ If avoiding false positives, or speed is important, choose t, b, r such that $t \approx (1/b)^{1/r}$ is large
- ► Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

1. Shingling:

- ▶ Pick *k* and determine *k*-shingles for each document
- ► Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

- ightharpoonup Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx (1/b)^{1/r}$ is low
- ▶ If avoiding false positives, or speed is important, choose t, b, r such that $t \approx (1/b)^{1/r}$ is large
- ► Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*

Distance Measures

DEFINITION: [DISTANCE MEASURE]

- 1. $d(x,y) \ge 0$ [d is non-negative]
- 2. d(x,y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x,y) = d(y,x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]

DEFINITION: [DISTANCE MEASURE]

- 1. $d(x,y) \ge 0$ [d is non-negative]
- 2. d(x,y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x,y) = d(y,x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]

DEFINITION: [DISTANCE MEASURE]

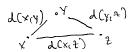
- 1. $d(x,y) \ge 0$ [d is non-negative]
- 2. d(x,y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x,y) = d(y,x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]

DEFINITION: [DISTANCE MEASURE]

- 1. $d(x,y) \ge 0$ [d is non-negative]
- 2. d(x,y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x,y) = d(y,x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]

DEFINITION: [DISTANCE MEASURE]

- 1. $d(x,y) \ge 0$ [*d* is non-negative]
- 2. d(x,y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x, y) = d(y, x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]



- ▶ In an *n*-dimensional Euclidean space, points are vectors of length *n* of real numbers
- ightharpoonup The L_r -distance, defined to be

$$d([x_1,...,x_n],[y_1,...,y_n]) = \left(\sum_{i=1}^n |x_i - y_i|^r\right)^{1/r}$$
(4)

is a distance measure

- ► A particular example is the Euclidean distance, defined as the *L*₂-distance
- ► Cosine: Let $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ be the L_2 -norm of a point in Euclidean space. The cosine similarity for two points $[x_1, ..., x_n], [y_1, ..., y_n]$ is defined to be

$$\frac{\sum_{i=1}^{n} x_i y_i}{||x||_2 ||y||_2} \tag{5}$$

- ▶ In an *n-dimensional Euclidean space*, points are vectors of length *n* of real numbers
- ightharpoonup The L_r -distance, defined to be

$$d([x_1,...,x_n],[y_1,...,y_n]) = \left(\sum_{i=1}^n |x_i - y_i|^r\right)^{1/r}$$
(4)

is a distance measure

- ► A particular example is the Euclidean distance, defined as the *L*₂-distance
- ► Cosine: Let $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ be the L_2 -norm of a point in Euclidean space. The cosine similarity for two points $[x_1, ..., x_n], [y_1, ..., y_n]$ is defined to be

$$\frac{\sum_{i=1}^{n} x_i y_i}{||x||_2 ||y||_2} \tag{5}$$

- ightharpoonup Measures the *angle* between two vectors x and y
- ► Gives rise to distance measure between lines that pass through origin

Let SIM(x, y) be the Jaccard similarity between two sets x, y. The quantity

$$1 - SIM(x, y) \tag{6}$$

can be proven to be a distance measure.

- ▶ *Edit distance*: Objects are strings. The edit distance between two strings $x = x_1...x_m$, $y = y_1...y_n$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- ▶ *Hamming Distance:* For $[x_1,...,x_n],[y_1,...,y_n]$, the Hamming distance is the number of positions $i \in [1,...,n]$ where $x_i \neq y$

Let SIM(x, y) be the Jaccard similarity between two sets x, y. The quantity

$$1 - SIM(x, y) \tag{6}$$

can be proven to be a distance measure.

- ▶ *Edit distance*: Objects are strings. The edit distance between two strings $x = x_1...x_m$, $y = y_1...y_n$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- ▶ *Hamming Distance*: For $[x_1,...,x_n],[y_1,...,y_n]$, the Hamming distance is the number of positions $i \in [1,...,n]$ where $x_i \neq y$

Let SIM(x, y) be the Jaccard similarity between two sets x, y. The quantity

$$1 - SIM(x, y) \tag{6}$$

can be proven to be a distance measure.

- ▶ *Edit distance*: Objects are strings. The edit distance between two strings $x = x_1...x_m$, $y = y_1...y_n$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- ► *Hamming Distance:* For $[x_1,...,x_n]$, $[y_1,...,y_n]$, the Hamming distance is the number of positions $i \in [1,...,n]$ where $x_i \neq y_i$

Edit Distance D_E :

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete b
 - 2. Insert f after c
 - 3. Insert g after e
- ▶ For $D_E(x,y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D_E :

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete b
 - 2. Insert *f* after *c*
 - 3. Insert *g* after *e*
- ▶ For $D_E(x, y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D_E :

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete *b*
 - 2. Insert *f* after *c*
 - 3. Insert *g* after *e*
- For $D_E(x, y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D_E :

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete b
 - 2. Insert f after c
 - 3. Insert *g* after *e*
- ▶ For $D_E(x, y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D $_E$:

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete b
 - 2. Insert f after c
 - 3. Insert *g* after *e*
- ▶ For $D_E(x,y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D_E :

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete *b*
 - 2. Insert f after c
 - 3. Insert *g* after *e*
- ► For $D_E(x, y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit Distance D_E :

Consider x = "abcde", y = "acfdeg". Claim: $D_E(x, y) = 3$.

- ► For proving $D_E(x, y) \le 3$, consider edit sequence
 - 1. Delete *b*
 - 2. Insert *f* after *c*
 - 3. Insert *g* after *e*
- ► For $D_E(x, y) \ge 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Hamming Distance D_H:

Consider x = 10101, y = 11110:

$$D_H(x, y) = 3$$

because disagreeing in 3 positions (of five overall).

Locality Sensitive Functions

- Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- \blacktriangleright A collection $\mathcal F$ of functions f of this form is called a *family of functions*
- ▶ Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

- ▶ Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- ▶ A collection \mathcal{F} of functions f of this form is called a *family of functions*
- ▶ Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

- Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- \blacktriangleright A collection $\mathcal F$ of functions f of this form is called a *family of functions*
- ▶ Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

- Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- \blacktriangleright A collection $\mathcal F$ of functions f of this form is called a *family of functions*
- ▶ Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS] A family \mathcal{F} of functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for each $f \in \mathcal{F}$:

- 1. $d(x,y) \le d_1$ implies that the probability that f(x) = f(y) is at least p_1
- 2. $d(x, y) \ge d_2$ implies that the probability that f(x) = f(y) is at most p_2

- ▶ Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- \blacktriangleright A collection $\mathcal F$ of functions f of this form is called a *family of functions*
- ► Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS] A family \mathcal{F} of functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for each $f \in \mathcal{F}$:

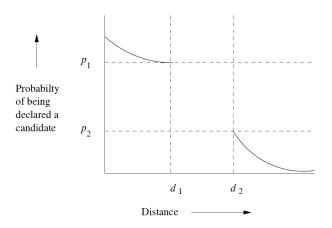
- 1. $d(x,y) \le d_1$ implies that the probability that f(x) = f(y) is at least p_1
- 2. $d(x,y) \ge d_2$ implies that the probability that f(x) = f(y) is at most p_2

- ▶ Consider functions f that hash items. The notation f(x) = f(y) means that x and y form a candidate pair.
- \blacktriangleright A collection $\mathcal F$ of functions f of this form is called a *family of functions*
- ► Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS] A family \mathcal{F} of functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for each $f \in \mathcal{F}$:

- 1. $d(x,y) \le d_1$ implies that the probability that f(x) = f(y) is at least p_1
- 2. $d(x,y) \ge d_2$ implies that the probability that f(x) = f(y) is at most p_2

LS FAMILY OF FUNCTION: ILLUSTRATION



Behaviour of any member of a (d_1,d_2,p_1,p_2) -sensitive family of function From mmds.org

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

- Consider d(x, y) = 1 SIM(x, y) to measure the distance between two sets x, y.
- ▶ Then it holds that the family of minhash functions is a $(d_1, d_2, 1 d_1, 1 d_2)$ -sensitive family for any $0 \le d_1 < d_2 \le 1$

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

- Consider d(x, y) = 1 SIM(x, y) to measure the distance between two sets x, y.
- ▶ Then it holds that the family of minhash functions is a $(d_1,d_2,1-d_1,1-d_2)$ -sensitive family for any $0 \le d_1 < d_2 \le 1$.

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

- ► Consider d(x, y) = 1 SIM(x, y) to measure the distance between two sets x, y.
- ► Then it holds that the family of minhash functions is a $(d_1, d_2, 1 d_1, 1 d_2)$ -sensitive family for any $0 \le d_1 < d_2 \le 1$.

PROOF: By definition, $d(x,y) \le d_1$ implies $\mathrm{SIM}(x,y) = 1 - d(x,y) \ge 1 - d_1$. If, on the other hand, $d(x,y) \ge d_2$, we obtain $\mathrm{SIM}(x,y) = 1 - d(x,y) \le 1 - d_2$

AMPLIFYING LS FAMILIES OF FUNCTIONS: AND-CONSTRUCTION

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{r,AND}$ is based on r members $f_1, ..., f_r$ of \mathcal{F} .

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (7)

AMPLIFYING LS FAMILIES OF FUNCTIONS: AND-CONSTRUCTION

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{r,AND}$ is based on r members $f_1, ..., f_r$ of \mathcal{F} .

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (7)

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{r,AND}$ is based on r members $f_1, ..., f_r$ of \mathcal{F} .

▶

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (7)

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{r,AND}$ is based on r members $f_1, ..., f_r$ of \mathcal{F} .

▶

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (7)

Example: Consider the members of one band of size r when applying the banding technique.

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{r,AND}$ is based on r members $f_1, ..., f_r$ of \mathcal{F} .

▶

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (7)

Example: Consider the members of one band of size r when applying the banding technique.

Fact: It is easy to show (consider yourself!) that $\mathcal{F}_{r,AND}$ is a $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive family of functions

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{b,OR}$ is based on b members $f_1, ..., f_b$ of \mathcal{F} .

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for one } i = 1, ..., r$$
 (8)

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{b,OR}$ is based on b members $f_1, ..., f_b$ of \mathcal{F} .

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for one } i = 1, ..., r$$
 (8)

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{b,OR}$ is based on b members $f_1, ..., f_b$ of \mathcal{F} .

▶

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for one } i = 1, ..., r$$
 (8)

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{b,OR}$ is based on b members $f_1, ..., f_b$ of \mathcal{F} .

▶

$$f(x) = f(y) \Leftrightarrow f_i(x) = f_i(y) \text{ for one } i = 1, ..., r$$
 (8)

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique.

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

▶ Each single member of $f \in \mathcal{F}_{b,OR}$ is based on b members $f_1, ..., f_b$ of \mathcal{F} .

▶

$$f(x) = f(y)$$
 \Leftrightarrow $f_i(x) = f_i(y)$ for one $i = 1, ..., r$ (8)

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique.

Fact: It is easy to show (consider yourself again!) that $\mathcal{F}_{b,OR}$ is a $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$ -sensitive family of functions.

Example: Applying the OR-construction to $\mathcal{F}_{r,AND}$, yielding $(\mathcal{F}_{r,AND})_{b,OR}$ reflects applying the banding technique altogether, and varying p_1, p_2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- ► How does behaviour change when varying *r* and *b*?
 S-curve
- ▶ What happens when exhanging AND and OR?

Example: Applying the OR-construction to $\mathcal{F}_{r,AND}$, yielding $(\mathcal{F}_{r,AND})_{b,OR}$ reflects applying the banding technique altogether, and varying p_1, p_2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- ► How does behaviour change when varying *r* and *b*?
 S-curve
- ▶ What happens when exhanging AND and OR?

Example: Applying the OR-construction to $\mathcal{F}_{r,AND}$, yielding $(\mathcal{F}_{r,AND})_{b,OR}$ reflects applying the banding technique altogether, and varying p_1, p_2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- ► How does behaviour change when varying *r* and *b*?
 S-curve
- ▶ What happens when exhanging AND and OR?

p	$1 - (1 - p^4)^4$	p	$(1-(1-p)^4)^4$
0.2	0.0064	0.1	0.0140
0.3	0.0320	0.2	0.1215
0.4	0.0985	0.3	0.3334
0.5	0.2275	0.4	0.5740
0.6	0.4260	0.5	0.7725
0.7	0.6666	0.6	0.9015
0.8	0.8785	0.7	0.9680
0.9	0.9860	0.8	0.9936

Original family \mathcal{F} is (0.2, 0.6, 0.8, 0.4)-sensitive.

Left: Applying first the AND- and then the OR-construction, reflecting locality sensitive hashing, yields a (0.2, 0.6, 0.8785, 0.0985)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a (0.2, 0.6, 0.9936, 0.5740)-sensitive family.

LS Families for Other Distance Measures

- Assume we have a *d*-dimensional vector space V
- ► Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- Let $f_i(x) := x_i$ be the entry of x at the i-th position
- So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- For randomly chosen x, y, the probability that $f_i(x) = f_i(y)$ is

$$\frac{d - h(x, y)}{d} = 1 - \frac{h(x, y)}{d}$$

the fraction of positions in which x and y agree

▶ Thus, the family \mathcal{F} of $\{f_1, ..., f_d\}$ is

$$(d_1, d_2, 1 - \frac{d_1}{d}, 1 - \frac{d_2}{d})$$
 - sensitive

- Assume we have a *d*-dimensional vector space V
- ► Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ▶ Let $f_i(x) := x_i$ be the entry of x at the i-th position
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- For randomly chosen x, y, the probability that $f_i(x) = f_i(y)$ is

$$\frac{d - h(x, y)}{d} = 1 - \frac{h(x, y)}{d}$$

the fraction of positions in which x and y agree

▶ Thus, the family \mathcal{F} of $\{f_1, ..., f_d\}$ is

$$(d_1, d_2, 1 - \frac{d_1}{d}, 1 - \frac{d_2}{d})$$
 - sensitive

- Assume we have a *d*-dimensional vector space V
- ► Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ▶ Let $f_i(x) := x_i$ be the entry of x at the i-th position
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ► For randomly chosen x, y, the probability that $f_i(x) = f_i(y)$ is

$$\frac{d - h(x, y)}{d} = 1 - \frac{h(x, y)}{d}$$

the fraction of positions in which *x* and *y* agree

▶ Thus, the family \mathcal{F} of $\{f_1, ..., f_d\}$ is

$$(d_1, d_2, 1 - \frac{d_1}{d}, 1 - \frac{d_2}{d})$$
 - sensitive

LS FAMILIES FOR HAMMING DISTANCE

- Assume we have a d-dimensional vector space V
- Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ▶ Let $f_i(x) := x_i$ be the entry of x at the i-th position
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ► For randomly chosen x, y, the probability that $f_i(x) = f_i(y)$ is

$$\frac{d - h(x, y)}{d} = 1 - \frac{h(x, y)}{d}$$

the fraction of positions in which *x* and *y* agree

► Thus, the family \mathcal{F} of $\{f_1, ..., f_d\}$ is

$$(d_1, d_2, 1 - \frac{d_1}{d}, 1 - \frac{d_2}{d})$$
 - sensitive

LS FAMILIES FOR HAMMING DISTANCE

- Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ▶ The family $\mathcal F$ of $\{f_1,...,f_d\}$ is $(d_1,d_2,1-\frac{d_1}{d},1-\frac{d_2}{d})$ sensitive for any $d_1< d_2$

DIFFERENCES

- ▶ Jaccard distance runs from 0 to 1, Hamming distance from 0 to *d*: need to scale with 1/*d*
- ► There is an unlimited number of minhash functions, but size of *F* is only *d*
- ightharpoonup The limited size of $\mathcal F$ puts limits to AND/OR constructions

- Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ▶ The family \mathcal{F} of $\{f_1,...,f_d\}$ is $(d_1,d_2,1-\frac{d_1}{d},1-\frac{d_2}{d})$ sensitive for any $d_1 < d_2$

DIFFERENCES

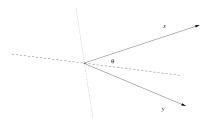
- ▶ Jaccard distance runs from 0 to 1, Hamming distance from 0 to *d*: need to scale with 1/*d*
- ► There is an unlimited number of minhash functions, but size of *F* is only *d*
- ightharpoonup The limited size of $\mathcal F$ puts limits to AND/OR constructions

- Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- ► So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ▶ The family \mathcal{F} of $\{f_1,...,f_d\}$ is $(d_1,d_2,1-\frac{d_1}{d},1-\frac{d_2}{d})$ sensitive for any $d_1 < d_2$

DIFFERENCES

- ▶ Jaccard distance runs from 0 to 1, Hamming distance from 0 to *d*: need to scale with 1/*d*
- ► There is an unlimited number of minhash functions, but size of *F* is only *d*
- ightharpoonup The limited size of $\mathcal F$ puts limits to AND/OR constructions

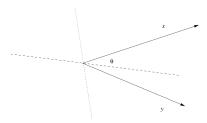
LS FAMILIES FOR COSINE DISTANCE



Two vectors making an angle θ From mmds.org

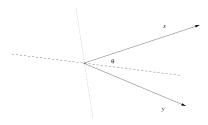
- ► Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in [0, 180]$ between them
- ▶ Whatever the dimension $d = \dim V$, two vectors x, y span a plane V(x, y) (so dim V(x, y) = 2)
- Angle *θ* is measured in that plane V(x, y)

LS FAMILIES FOR COSINE DISTANCE



Two vectors making an angle θ From mmds.org

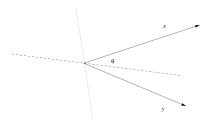
- ► Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in [0, 180]$ between them
- ► Whatever the dimension $d = \dim V$, two vectors x, y span a plane V(x, y) (so dim V(x, y) = 2)
- ▶ Angle θ is measured in that plane V(x, y)



Two vectors making an angle θ From mmds.org

- ► Any hyperplane (dimension dim V-1) intersects V(x,y) in a line
- ► Figure: two hyperplanes, indicated by dotted and dashed line
- \triangleright Determine hyperplanes *U* by picking normal vectors τ
- ▶ That is

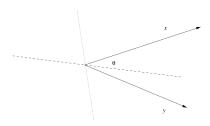
$$U = \{ u \in V \mid \langle u, v \rangle = 0 \}$$



Two vectors making an angle θ From mmds.org

- ► Any hyperplane (dimension dim V-1) intersects V(x,y) in a line
- Figure: two hyperplanes, indicated by dotted and dashed line
- ightharpoonup Determine hyperplanes U by picking normal vectors v
- ► That is

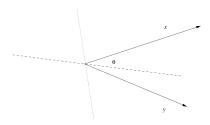
$$U = \{ u \in V \mid \langle u, v \rangle = 0 \}$$



Two vectors making an angle θ From mmds.org

- ► Consider dashed line hyperplane *U*: *x* and *y* on different sides
- \blacktriangleright Let v be normal vector of U:

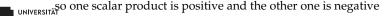
$$\operatorname{sgn}\langle x, v \rangle \neq \operatorname{sgn}\langle y, v \rangle$$

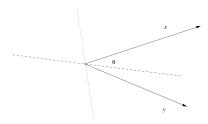


Two vectors making an angle θ From mmds.org

- Consider dashed line hyperplane *U*: *x* and *y* on different sides
- ► Let *v* be normal vector of *U*:

$$\operatorname{sgn}\langle x, v \rangle \neq \operatorname{sgn}\langle y, v \rangle$$

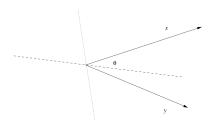




Two vectors making an angle θ From mmds.org

- ► Consider dotted line hyperplane *U*: *x* and *y* on the same side
- \blacktriangleright Let v be normal vector of U:

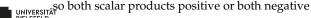
$$\operatorname{sgn}\langle x, v \rangle = \operatorname{sgn}\langle y, v \rangle$$

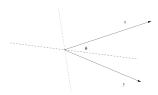


Two vectors making an angle θ From mmds.org

- ► Consider dotted line hyperplane *U*: *x* and *y* on the same side
- ► Let *v* be normal vector of *U*:

$$\operatorname{sgn}\langle x, v \rangle = \operatorname{sgn}\langle y, v \rangle$$





Two vectors making an angle θ From mmds.org

- ▶ Probability to choose x, y at an angle $\theta(x, y)$ and
 - ▶ hyperplane like dashed line: $\theta(x,y)/180$
 - ▶ hyperplane like dotted line: $(180 \theta(x, y))/180$
- ightharpoonup Consider hash functions f corresponding to randomly picked normal vectors v_f

LS Families for Cosine Distance: Random HYPERPLANES

Two vectors making an angle θ From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_f
- ightharpoonup For $x, y \in V$, let

$$f(x) = f(y)$$
 if and only if $\operatorname{sgn}\langle v_f, x \rangle = \operatorname{sgn}\langle v_f, y \rangle$

- \triangleright F is $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive

Two vectors making an angle θ From mmds.org

- ► Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_f
- ► For $x, y \in V$, let

$$f(x) = f(y)$$
 if and only if $\operatorname{sgn}\langle v_f, x \rangle = \operatorname{sgn}\langle v_f, y \rangle$

- $ightharpoonup \mathcal{F}$ is $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive
- ▶ One can amplify the family as desired

Two vectors making an angle θ From mmds.org

- ► Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_f
- ► For $x, y \in V$, let

$$f(x) = f(y)$$
 if and only if $\operatorname{sgn}\langle v_f, x \rangle = \operatorname{sgn}\langle v_f, y \rangle$

- $ightharpoonup \mathcal{F}$ is $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive
- One can amplify the family as desired

Two vectors making an angle θ From mmds.org

- ► Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_f
- ► For $x, y \in V$, let

$$f(x) = f(y)$$
 if and only if $\operatorname{sgn}\langle v_f, x \rangle = \operatorname{sgn}\langle v_f, y \rangle$

- $ightharpoonup \mathcal{F}$ is $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive
- ► One can amplify the family as desired
 - ▶ Apart from rescaling by 180, \mathcal{F} is just like minhash family

SAMPLING RANDOM NORMAL VECTORS: SKETCHES

- ▶ When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- ightharpoonup Let $v_1, ..., v_n$ be such random vectors
- ightharpoonup For a vector x, the array

$$[\operatorname{sgn}\langle v_1, x \rangle, ..., \operatorname{sgn}\langle v_n, x \rangle] \in [-1, +1]^n$$
(9)

is said to be the *sketch* of *x*

SAMPLING RANDOM NORMAL VECTORS: SKETCHES

- ▶ When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- ightharpoonup Let $v_1, ..., v_n$ be such random vectors
- \blacktriangleright For a vector x, the array

$$[\operatorname{sgn}\langle v_1, x \rangle, ..., \operatorname{sgn}\langle v_n, x \rangle] \in [-1, +1]^n \tag{9}$$

is said to be the *sketch* of *x*

- Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- ▶ Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - Sketch of *x* is [+1, +1, -1]
 - ▶ Sketch of y is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\theta(x, y) = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

- ► Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- ► Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

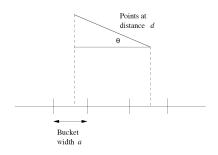
- Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- ▶ Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

- Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

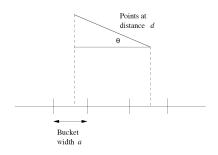
- Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- ▶ Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

- ► Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- ▶ Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

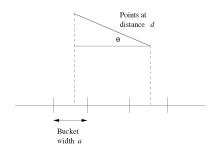
- ► Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]
- Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- ► Then
 - ► Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x,y)} = 120$
 - ► However true $\theta(x, y) = 38$
- ► There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$



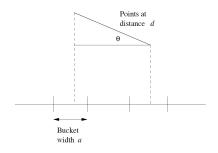
- ► Let us consider 2-dimensional space *V*
- ▶ Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
- Points $x, y \in V$ are "hashed" to buckets
- UNIVERSITÄT (x) = f(y) when hashed to the same segment



- ightharpoonup Let us consider 2-dimensional space V
- ▶ Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
- Points $x, y \in V$ are "hashed" to buckets
- UNIVERSITÄT (x) = f(y) when hashed to the same segment

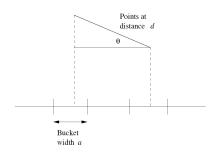


- ightharpoonup Let us consider 2-dimensional space V
- ▶ Each member f of family \mathcal{F} is associated with line in V
- ► Line is divided into buckets (segments) of length *a*
- Points $x, y \in V$ are "hashed" to buckets
- UNIVERSITÄT (x) = f(y) when hashed to the same segment



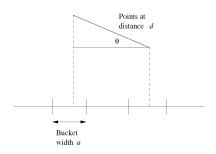
- ► Let us consider 2-dimensional space *V*
- ▶ Each member f of family \mathcal{F} is associated with line in V
- ► Line is divided into buckets (segments) of length *a*
- ▶ Points $x, y \in V$ are "hashed" to buckets
- UNIVERSITÄf(x) = f(y) when hashed to the same segment

LS FAMILIES FOR EUCLIDEAN DISTANCE

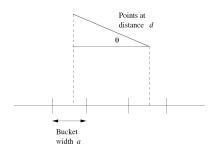


- ▶ If Euclidean distance $d(x, y) \le a/2$, then probability to hash x, y to same segment is at least 1/2
 - ▶ Distance between x, y after projecting is $d(x, y) \cos \theta \le d(x, y) \le a/2$

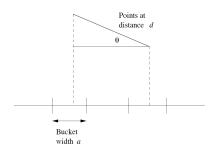
LS FAMILIES FOR EUCLIDEAN DISTANCE



- ▶ If Euclidean distance $d(x, y) \le a/2$, then probability to hash x, y to same segment is at least 1/2
 - ▶ Distance between x, y after projecting is $d(x, y) \cos \theta \le d(x, y) \le a/2$

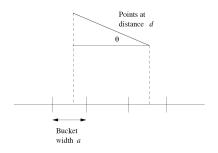


- ▶ If distance between *x*, *y* after projecting is greater than *a*, they will be hashed to different buckets
- ▶ So, if $d(x,y) \ge 2a$, we have that $d(x,y)\cos\theta > a$ for $\theta \in [0,60]$
- ▶ It holds that $\theta \in [0, 60]$ with probability 2/3 (note: here $\theta \in [0, 90]$)

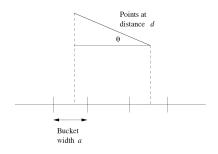


- ▶ If distance between *x*, *y* after projecting is greater than *a*, they will be hashed to different buckets
- ▶ So, if $d(x, y) \ge 2a$, we have that $d(x, y) \cos \theta > a$ for $\theta \in [0, 60]$
- ▶ It holds that $\theta \in [0, 60]$ with probability 2/3 (note: here $\theta \in [0, 90]$)

LS FAMILIES FOR EUCLIDEAN DISTANCE



- ▶ If distance between *x*, *y* after projecting is greater than *a*, they will be hashed to different buckets
- ▶ So, if $d(x, y) \ge 2a$, we have that $d(x, y) \cos \theta > a$ for $\theta \in [0, 60]$
- ▶ It holds that $\theta \in [0, 60]$ with probability 2/3 (note: here $\theta \in [0, 90]$)

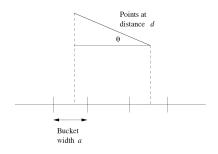


Two points at distance d>>a are hashed to identical bucket with small probability From mmds.org

► In conclusion, the family described has been

$$(a/2, 2a, 1/2, 1/3)$$
 – sensitive

- ► Family can be amplified as desired
- ▶ If families for arbitrary $d_1 < d_2$ (and not just $d_1 = a/2$, $d_2 = 2a$), and also for arbitrary-dimensional vector spaces are desired, special efforts are



Two points at distance d>>a are hashed to identical bucket with small probability From mmds.org

► In conclusion, the family described has been

$$(a/2, 2a, 1/2, 1/3)$$
 – sensitive

- ► Family can be amplified as desired
- ▶ If families for arbitrary $d_1 < d_2$ (and not just $d_1 = a/2, d_2 = 2a$), and also for arbitrary-dimensional vector spaces are desired, special efforts are

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 3.4–3.7
- ► See http://www.mmds.org/ for further resources
- ► Next lecture: "Map Reduce / Workflow Systems I"
 - ► See *Mining of Massive Datasets* 2.1–2.4

