Finding Similar Items II

Alexander Schönhuth

Bielefeld University April 21, 2022

Summary of Current Status

From mmds.org

- Shingling: turning text files into sets Done!
- Minhashing: computing similarity for large sets Done!
- Locality Sensitive Hashing: avoids $O\left(N^{2}\right)$ comparisons by determining candidate pairs today!

Current Status: Issues Still Remaining

- Minhashing enabled to compute similarity between two sets very fast
- Shingling enabled to turn documents into sets such that minhashing could be applied
- But if number of items N is too large, $O\left(N^{2}\right)$ similarity computations are infeasible, even using minhashing
- Idea: Browse through items and determine candidate pairs:
- Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

Current Status: Issues Still Remaining

- Minhashing enabled to compute similarity between two sets very fast
- Shingling enabled to turn documents into sets such that minhashing could be applied
- But if number of items N is too large, $O\left(N^{2}\right)$ similarity computations are infeasible, even using minhashing
- Idea: Browse through items and determine candidate pairs:
- Number of candidate pairs is much smaller than $O\left(N^{2}\right)$
- One performs minhashing only for candidate pairs
- Candidate pairs can be determined with a very fast procedure

Current Status: Issues Still Remaining

- Minhashing enabled to compute similarity between two sets very fast
- Shingling enabled to turn documents into sets such that minhashing could be applied
- But if number of items N is too large, $O\left(N^{2}\right)$ similarity computations are infeasible, even using minhashing
- Idea: Browse through items and determine candidate pairs:
- Number of candidate pairs is much smaller than $O\left(N^{2}\right)$
- One performs minhashing only for candidate pairs
- Candidate pairs can be determined with a very fast procedure
- Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

Learning Goals Today

- Understand the technique of Locality Sensitive Hashing (LSH)
- Understand the theory supporting it

Locality Sensitive Hashing

Locality Sensitive Hashing: Idea

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

- Here: $m=5, n=2$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

$$
\begin{aligned}
& \Rightarrow n \cdot \log _{2} m<m \\
& \Rightarrow m^{n}<2
\end{aligned}
$$

BIELEFELD

Locality Sensitive Hashing: Idea

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

Idea:

- Hash items (columns in SIG) several times (b times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is $O(N)$, examining buckets requires little time
- Here: $m=5, n=2$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

Locality Sensitive Hashing: Idea

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

Idea:

- Hash items (columns in SIG) several times (b times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is $O(N)$, examining buckets requires little time
- Here: $m=5, n=2$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

Locality Sensitive Hashing: Idea

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

- Here: $m=5, n=2$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

Idea:

- Hash items (columns in SIG) several times (b times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is $O(N)$, examining buckets requires little time

Motivation:

- False Positive: dissimilar pair hashing to the same bucket
- False Negative: similar pair never hashing to the same bucket
- Motivation: limit both false positives and negatives

Locality Sensitive Hashing: Idea

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

- Here: $m=5, n=2$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

Idea:

- Hash items (columns in SIG) several times (b times)
- Candidate pair: pair of columns hashed to the same bucket, by any of the hash functions
- Runtime: Hashing all columns is $O(N)$, examining buckets requires little time

Motivation:

- False Positive: dissimilar pair hashing to the same bucket
- False Negative: similar pair never hashing to the same bucket
- Motivation: limit both false positives and negatives

Locality Sensitive Hashing: Banding Technique

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- Divide rows of signature matrix into b bands of r rows each
- For each band, a hash function hashes r integers to buckets
- Number of buckets is large to avoid collisions
- Candidate nair: a nair of columns hashed to the same bucket, in any band

Locality Sensitive Hashing: Banding Technique

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- Divide rows of signature matrix into b bands of r rows each
- For each band, a hash function hashes r integers to buckets
- Number of buckets is large to avoid collisions
- Candidate pair: a pair of columns hashed to the same bucket, in any band

Locality Sensitive Hashing: Banding Technique

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- Divide rows of signature matrix into b bands of r rows each
- For each band, a hash function hashes r integers to buckets
- Number of buckets is large to avoid collisions
- Candidate pair: a pair of columns hashed to the same bucket, in any band

BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- The columns showing $[0,2,1]$ in band 1 are declared a candidate pair
\rightarrow Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- The columns showing $[0,2,1]$ in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
\rightarrow apart from collisions occurring $\sqrt{1 \times 5}$ which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

Banding Technique: Example

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- The columns showing $[0,2,1]$ in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
- apart from collisions occurring which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- The columns showing $[0,2,1]$ in band 1 are declared a candidate pair
- Other pairs of columns shown are not declared candidate pairs as per the hash function of the first band
- apart from collisions occurring which was designed to happen very rarely
- Pairs of columns may be hashed to the same bucket in another band, so may be declared candidate pairs

Banding Technique: Theorem

Let SIG be a signature matrix grouped into

- b bands of
- r rows each
and consider
- a pair of columns of Jaccard similarity s

Theorem [LSH Candidate Pair]:
The probability that the pair of columns becomes a candidate pair is

$$
\begin{equation*}
1-\left(1-s^{r}\right)^{b} \tag{1}
\end{equation*}
$$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r},
\Rightarrow disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r},
- disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r},
- disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r},
- disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r},
- disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: The S-Curve

Definition: [S-CuRVe]
For given b and r, the S-curve is defined by the prescription

$$
\begin{equation*}
1-\left(1-s^{r}\right)^{b} \tag{2}
\end{equation*}
$$

Exemplary S-curve

Banding Technique: The S-Curve

Definition: [S-Curve]
For given b and r, the S-curve is defined by the prescription

$$
\begin{equation*}
s \mapsto 1-\left(1-s^{r}\right)^{b} \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll}
s & 1-\left(1-s^{r}\right)^{b} \\
\hline .2 & .006 \\
.3 & .047 \\
.4 & .186 \\
.5 & .470 \\
.6 & .802 \\
.7 & .975 \\
.8 & .9996
\end{array}
$$

Table: Values for S-curve with $b=20$ and $r=5$

Finding Similar Documents: Overall WORKFLOW

From mmds. org

- Shingling: Done!
- Minhashing: Done!
- Locality-Sensitive Hashing: Done!

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r
$>$ One needs to determine threshold t :
- bands times rows is number of rows of signature matrix $b r=n$
$\rightarrow t$ corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r
- One needs to determine threshold t :
- $s \geq t$: candidate pair
- $s<t$: no candidate pair
\rightarrow bands times rows is number of rows of signature matrix $b r=n$
- t corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r
- One needs to determine threshold t :
- $s \geq t$: candidate pair
- $s<t$: no candidate pair
- bands times rows is number of rows of signature matrix $b r=n$
$\rightarrow t$ corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r
- One needs to determine threshold t :
- $s \geq t$: candidate pair
- $s<t$: no candidate pair
- bands times rows is number of rows of signature matrix $b r=n$
- t corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:
3. Locality Sensitive Hashing:
4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:
4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- If avoiding false positives, or speed is important, choose t, b, r such that
- Determine candidate pairs by applying the banding technique

4. Return to simnatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that
- Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is large

4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is large
- Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is low
- If avoiding false positives, or speed is important, choose t, b, r such that $t \approx(1 / b)^{1 / r}$ is large
- Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Distance Measures

Distance Measure: Definition

Definition: [Distance Measure]
Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative $]$
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measure: Definition

Definition: [Distance Measure]
Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative]
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measure: Definition

Definition: [Distance Measure]
Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative]
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measure: Definition

Definition: [Distance Measure]
Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative]
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measure: Definition

Definition: [Distance Measure]

Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative]
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measures: Examples

- In an n-dimensional Euclidean space, points are vectors of length n of real numbers
- The L_{r}-distance, defined to be

$$
\begin{equation*}
d\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r} \tag{4}
\end{equation*}
$$

is a distance measure

- A particular example is the Euclidean distance, defined as the L_{2}-distance
\Rightarrow Cosine: Let $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ be the $L_{2}-n o r m$ of a point in Euclidean space. The cosine similarity for two points $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$ is defined to be

Distance Measures: Examples

- In an n-dimensional Euclidean space, points are vectors of length n of real numbers
- The L_{r}-distance, defined to be

$$
\begin{equation*}
d\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r} \tag{4}
\end{equation*}
$$

is a distance measure

- A particular example is the Euclidean distance, defined as the L_{2}-distance
- Cosine: Let $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ be the L_{2}-norm of a point in Euclidean space. The cosine similarity for two points $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$ is defined to be

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\|x\|_{2}\|y\|_{2}} \tag{5}
\end{equation*}
$$

- Measures the angle between two vectors x and y
- Gives rise to distance measure between lines that pass through origin

Distance Measures: Examples

- Let $\operatorname{SIM}(x, y)$ be the Jaccard similarity between two sets x, y. The quantity

$$
\begin{equation*}
1-\operatorname{SIM}(x, y) \tag{6}
\end{equation*}
$$

can be proven to be a distance measure.

Distance Measures: Examples

- Let $\operatorname{SIM}(x, y)$ be the Jaccard similarity between two sets x, y. The quantity

$$
\begin{equation*}
1-\operatorname{SIM}(x, y) \tag{6}
\end{equation*}
$$

can be proven to be a distance measure.

- Edit distance: Objects are strings. The edit distance between two strings $x=x_{1} \ldots x_{m}, y=y_{1} \ldots y_{n}$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.

Distance Measures: Examples

- Let $\operatorname{SIM}(x, y)$ be the Jaccard similarity between two sets x, y. The quantity

$$
\begin{equation*}
1-\operatorname{SIM}(x, y) \tag{6}
\end{equation*}
$$

can be proven to be a distance measure.

- Edit distance: Objects are strings. The edit distance between two strings $x=x_{1} \ldots x_{m}, y=y_{1} \ldots y_{n}$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- Hamming Distance: For $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$, the Hamming distance is the number of positions $i \in[1, \ldots, n]$ where $x_{i} \neq y_{i}$

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=$ "abcde", $y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.
\rightarrow For proving $D_{E}(x, y) \leq 3$, consider edit sequence
\Rightarrow For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

2. Insert f after c
3. Insert g after e
\Rightarrow For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e
\Rightarrow For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c

- For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

\Rightarrow For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

- For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

- For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Hamming Distance D_{H} :
Consider $x=10101, y=11110$:

$$
D_{H}(x, y)=3
$$

because disagreeing in 3 positions (of five overall).

Locality Sensitive Functions

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Definition: [LOcality Sensitive (LS) Family of Functions]
A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for each $f \in \mathcal{F}$:
2. $d(x, y) \geq d_{2}$ implies that the probability that $f(x)=f(y)$ is at most p_{2}

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Definition: [LOcality Sensitive (LS) Family of Functions]
A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for each $f \in \mathcal{F}$:

1. $d(x, y) \leq d_{1}$ implies that the probability that $f(x)=f(y)$ is at least p_{1}

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Definition: [LOcality Sensitive (LS) Family of Functions]

A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for each $f \in \mathcal{F}$:

1. $d(x, y) \leq d_{1}$ implies that the probability that $f(x)=f(y)$ is at least p_{1}
2. $d(x, y) \geq d_{2}$ implies that the probability that $f(x)=f(y)$ is at most p_{2}

LS FAmily of Function: ILLUStration

Behaviour of any member of a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family of function From mmds.org

LS FAmily of Functions: Example

Consider minhash functions.
Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

LS FAmily of Functions: Example

Consider minhash functions.
Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

Example: LS Family of Minhash Functions

- Consider $d(x, y)=1-\operatorname{SIM}(x, y)$ to measure the distance between two sets x, y.

Then it holds that the family of minhash functions is a
$\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any $0 \leq d_{1}<d_{2} \leq 1$

LS FAmily of Functions: Example

Consider minhash functions.
Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

Example: LS Family of Minhash Functions

- Consider $d(x, y)=1-\operatorname{SIM}(x, y)$ to measure the distance between two sets x, y.
- Then it holds that the family of minhash functions is a $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any $0 \leq d_{1}<d_{2} \leq 1$.

LS FAMILY of Functions: Example

Consider minhash functions.
Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

Example: LS Family of Minhash Functions

- Consider $d(x, y)=1-\operatorname{SIM}(x, y)$ to measure the distance between two sets x, y.
- Then it holds that the family of minhash functions is a $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any $0 \leq d_{1}<d_{2} \leq 1$.

Proof: By definition, $d(x, y) \leq d_{1}$ implies $\operatorname{SIM}(x, y)=1-d(x, y) \geq 1-d_{1}$. If, on the other hand, $d(x, y) \geq d_{2}$, we obtain $\operatorname{SIM}(x, y)=1-d(x, y) \leq 1-d_{2}$

Amplifying LS Families of Functions: AND-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

Amplifying LS Families of Functions: AND-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{r, A N D}$ is based on r members f_{1}, \ldots, f_{r} of \mathcal{F}.

Amplifying LS Families of Functions: AND-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{r, A N D}$ is based on r members f_{1}, \ldots, f_{r} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for all } i=1, \ldots, r \tag{7}
\end{equation*}
$$

Amplifying LS Families of Functions: AND-Construction

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{r, A N D}$ is based on r members f_{1}, \ldots, f_{r} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for all } i=1, \ldots, r \tag{7}
\end{equation*}
$$

Example: Consider the members of one band of size r when applying the banding technique.

Amplifying LS Families of Functions: AND-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{r, A N D}$ is based on r members f_{1}, \ldots, f_{r} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for all } i=1, \ldots, r \tag{7}
\end{equation*}
$$

Example: Consider the members of one band of size r when applying the banding technique.
Fact: It is easy to show (consider yourself!) that $\mathcal{F}_{r, A N D}$ is a $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive family of functions

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, O R}$ by the following principle:

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, \mathrm{OR}}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{b, \text { OR }}$ is based on b members f_{1}, \ldots, f_{b} of \mathcal{F}.

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, \mathrm{OR}}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{b, \text { OR }}$ is based on b members f_{1}, \ldots, f_{b} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for one } i=1, \ldots, r \tag{8}
\end{equation*}
$$

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, \mathrm{OR}}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{b, O R}$ is based on b members f_{1}, \ldots, f_{b} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for one } i=1, \ldots, r \tag{8}
\end{equation*}
$$

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique.

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, \mathrm{OR}}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{b, O R}$ is based on b members f_{1}, \ldots, f_{b} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for one } i=1, \ldots, r \tag{8}
\end{equation*}
$$

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique. Fact: It is easy to show (consider yourself again!) that $\mathcal{F}_{b, \mathrm{OR}}$ is a $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{b}, 1-\left(1-p_{2}\right)^{b}\right)$-sensitive family of functions.

Amplifying LS Families of Functions: Locality Sensitive Hashing

Example: Applying the OR-construction to $\mathcal{F}_{r, A N D}$, yielding $\left(\mathcal{F}_{r, A N D}\right)_{b, \text { OR }}$ reflects applying the banding technique altogether, and varying p_{1}, p_{2} reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- How does behaviour change when varying r and b ? 18 S-curve
- What happens when exhanging AND and OR?

Amplifying LS Families of Functions: Locality Sensitive Hashing

Example: Applying the OR-construction to $\mathcal{F}_{r, A N D}$, yielding $\left(\mathcal{F}_{r, A N D}\right)_{b, O R}$ reflects applying the banding technique altogether, and varying p_{1}, p_{2} reflects reproducing the S -curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- How does behaviour change when varying r and b ? S-curve
- What happens when exhanging AND and OR?

Amplifying LS Families of Functions: Locality Sensitive Hashing

Example: Applying the OR-construction to $\mathcal{F}_{r, A N D}$, yielding $\left(\mathcal{F}_{r, A N D}\right)_{b, \text { OR }}$ reflects applying the banding technique altogether, and varying p_{1}, p_{2} reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- How does behaviour change when varying r and b ?

S-curve

- What happens when exhanging AND and OR?

Amplifying LS Families of Functions: Locality Sensitive Hashing

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

p	$\left(1-(1-p)^{4}\right)^{4}$
0.1	0.0140
0.2	0.1215
0.3	0.3334
0.4	0.5740
0.5	0.7725
0.6	0.9015
0.7	0.9680
0.8	0.9936

Original family \mathcal{F} is $(0.2,0.6,0.8,0.4)$-sensitive.
Left: Applying first the AND- and then the OR-construction, reflecting locality sensitive hashing, yields a ($0.2,0.6,0.8785,0.0985$)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a ($0.2,0.6,0.9936,0.5740$)-sensitive family.

LS Families for Other Distance Measures

LS Families for Hamming Distance

LS FAmiLIes For Hamming Distance

- Assume we have a d-dimensional vector space V
- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
\Rightarrow Let $f_{i}(x):=x_{i}$ be the entry of x at the i-th position
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- For randomly chosen x, y, the probability that $f_{i}(x)=f_{i}(y)$ is

the fraction of positions in which x and y agree
- Thus, the family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is

$$
\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)-\text { sensitive }
$$

for any $d_{1}<d_{2}$

LS Families for Hamming Distance

- Assume we have a d-dimensional vector space V
- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- Let $f_{i}(x):=x_{i}$ be the entry of x at the i-th position
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
\Rightarrow For randomly chosen x, y, the probability that $f_{i}(x)=f_{i}(y)$ is

the fraction of positions in which x and y agree
- Thus, the family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is

$$
\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)-\text { sensitive }
$$

for any $d_{1}<d_{2}$

LS Families for Hamming Distance

- Assume we have a d-dimensional vector space V
- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- Let $f_{i}(x):=x_{i}$ be the entry of x at the i-th position
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- For randomly chosen x, y, the probability that $f_{i}(x)=f_{i}(y)$ is

$$
\frac{d-h(x, y)}{d}=1-\frac{h(x, y)}{d}
$$

the fraction of positions in which x and y agree

$$
\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)-\text { sensitive }
$$

LS Families for Hamming Distance

- Assume we have a d-dimensional vector space V
- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- Let $f_{i}(x):=x_{i}$ be the entry of x at the i-th position
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- For randomly chosen x, y, the probability that $f_{i}(x)=f_{i}(y)$ is

$$
\frac{d-h(x, y)}{d}=1-\frac{h(x, y)}{d}
$$

the fraction of positions in which x and y agree

- Thus, the family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is

$$
\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)-\text { sensitive }
$$

for any $d_{1}<d_{2}$

LS Families for Hamming Distance

- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- The family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is ($d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}$) - sensitive for any $d_{1}<d_{2}$

DIFFERENCES

- Jaccard distance runs from 0 to 1, Hamming distance from 0 to d : need to scale with $1 / d$
\Rightarrow There is an unlimited number of minhash functions, but size of \mathcal{F} is only d
- The limited size of \mathcal{F} puts limits to AND/OR constructions

LS Families for Hamming Distance

- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- The family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is $\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)$ - sensitive for any $d_{1}<d_{2}$

DIFFERENCES

- Jaccard distance runs from 0 to 1, Hamming distance from 0 to d : need to scale with $1 / d$
- There is an unlimited number of minhash functions, but size of \mathcal{F} is only d
- The limited size of \mathcal{F} puts limits to AND/OR constructions

LS Families for Hamming Distance

- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- The family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is $\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)$ - sensitive for any $d_{1}<d_{2}$

DIFFERENCES

- Jaccard distance runs from 0 to 1, Hamming distance from 0 to d : need to scale with $1 / d$
- There is an unlimited number of minhash functions, but size of \mathcal{F} is only d
- The limited size of \mathcal{F} puts limits to AND/OR constructions

LS FAmilies for Cosine Distance

Two vectors making an angle θ
From mmds.org

- Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in[0,180]$ between them
\Rightarrow Whatever the dimension $d=\operatorname{dim} V$, two vectors x, y span a plane $V(x, y)($ so $\operatorname{dim} V(x, y)=2)$
- Angle θ is measured in that plane $V(x, y)$

LS Families for Cosine Distance

Two vectors making an angle θ From mmds.org

- Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in[0,180]$ between them
- Whatever the dimension $d=\operatorname{dim} V$, two vectors x, y span a plane $V(x, y)($ so $\operatorname{dim} V(x, y)=2)$
- Angle θ is measured in that plane $V(x, y)$

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ From mmds.org

- Any hyperplane (dimension $\operatorname{dim} V-1$) intersects $V(x, y)$ in a line
- Figure: two hyperplanes, indicated by dotted and dashed line
- Determine hyperplanes U by picking normal vectors v
- That is

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ From mmds.org

- Any hyperplane (dimension $\operatorname{dim} V-1$) intersects $V(x, y)$ in a line
- Figure: two hyperplanes, indicated by dotted and dashed line
- Determine hyperplanes U by picking normal vectors v
- That is

$$
U=\{u \in V \mid\langle u, v\rangle=0\}
$$

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider dashed line hyperplane $U: x$ and y on different sides
- Let v be normal vector of U :

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider dashed line hyperplane $U: x$ and y on different sides
- Let v be normal vector of U :

$$
\operatorname{sgn}\langle x, v\rangle \neq \operatorname{sgn}\langle y, v\rangle
$$

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider dotted line hyperplane $U: x$ and y on the same side
- Let v be normal vector of U :

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ From mmds.org

- Consider dotted line hyperplane $U: x$ and y on the same side
- Let v be normal vector of U :

$$
\operatorname{sgn}\langle x, v\rangle=\operatorname{sgn}\langle y, v\rangle
$$

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Probability to choose x, y at an angle $\theta(x, y)$ and
- hyperplane like dashed line: $\theta(x, y) / 180$
- hyperplane like dotted line: $(180-\theta(x, y)) / 180$
- Consider hash functions f corresponding to randomly picked normal vectors v_{f}

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_{f}
\Rightarrow For $x, y \in V$, let
$f(x)=f(y)$ if and only if $\operatorname{sgn}\left\langle v_{f}, x\right\rangle=\operatorname{sgn}\left\langle v_{f}, y\right\rangle$
$\Rightarrow F$ is $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive
- One can amplify the family as desired

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_{f}
- For $x, y \in V$, let

$$
f(x)=f(y) \quad \text { if and only if } \quad \operatorname{sgn}\left\langle v_{f}, x\right\rangle=\operatorname{sgn}\left\langle v_{f}, y\right\rangle
$$

$\Rightarrow \mathcal{F}$ is $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive

- One can amplify the family as desired

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_{f}
- For $x, y \in V$, let

$$
f(x)=f(y) \quad \text { if and only if } \quad \operatorname{sgn}\left\langle v_{f}, x\right\rangle=\operatorname{sgn}\left\langle v_{f}, y\right\rangle
$$

$-\mathcal{F}$ is $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive

- One can amplify the family as desired

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_{f}
- For $x, y \in V$, let

$$
f(x)=f(y) \quad \text { if and only if } \quad \operatorname{sgn}\left\langle v_{f}, x\right\rangle=\operatorname{sgn}\left\langle v_{f}, y\right\rangle
$$

$-\mathcal{F}$ is $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive

- One can amplify the family as desired
- Apart from rescaling by $180, \mathcal{F}$ is just like minhash family

Sampling Random Normal Vectors: Sketches

- When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- Let v_{1}, \ldots, v_{n} be such random vectors
- For a vector x, the array

$$
\left[\operatorname{sgn}\left\langle v_{1}, x\right\rangle, \ldots, \operatorname{sgn}\left\langle v_{n}, x\right\rangle\right] \in[-1,+1]^{n}
$$

is said to be the sketch of x

Sampling Random Normal Vectors: Sketches

- When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- Let v_{1}, \ldots, v_{n} be such random vectors
- For a vector x, the array

$$
\begin{equation*}
\left[\operatorname{sgn}\left\langle v_{1}, x\right\rangle, \ldots, \operatorname{sgn}\left\langle v_{n}, x\right\rangle\right] \in[-1,+1]^{n} \tag{9}
\end{equation*}
$$

is said to be the sketch of x

SKETCHES: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\theta(x, y)=45$

Sketches: Example

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\theta(x, y)=45$

SKETCHES: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$

Sketches of x, y agree in 1 out of 3 positions: we estimate $\overline{\theta(x, y)}=120$

- However true $\theta(x, y)=38$
> There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\theta(x, y)=45$

SKETCHES: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\overline{\theta(x, y)}=45$

Sketches: Example

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\overline{\theta(x, y)}=45$

Sketches: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)

SKETCHES: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x, y)}=45$

LS FAmILIES FOR EUCLIDEAN Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- Let us consider 2-dimensional space V
\Rightarrow Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
- Points $x, y \in V$ are "hashed" to buckets

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- Let us consider 2-dimensional space V
- Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
\rightarrow Points $x, y \in V$ are "hashed" to buckets

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- Let us consider 2-dimensional space V
- Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
\rightarrow Points $x, y \in V$ are "hashed" to buckets

BIELEFELD

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- Let us consider 2-dimensional space V
- Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
- Points $x, y \in V$ are "hashed" to buckets

LS FAMILIES FOR EUCLIDEAN Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If Euclidean distance $d(x, y) \leq a / 2$, then probability to hash x, y to same segment is at least $1 / 2$

$$
\text { Distance between } x, y \text { after projecting is } d(x, y) \cos \theta \leq d(x, y) \leq a / 2
$$

LS FAMILIES FOR EUCLIDEAN Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If Euclidean distance $d(x, y) \leq a / 2$, then probability to hash x, y to same segment is at least $1 / 2$
- Distance between x, y after projecting is $d(x, y) \cos \theta \leq d(x, y) \leq a / 2$

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If distance between x, y after projecting is greater than a, they will be hashed to different buckets
\Rightarrow So, if $d(x, y) \geq 2 a$, we have that $d(x, y) \cos \theta>a$ for $\theta \in[0,60]$
\Rightarrow It holds that $\theta \in[0,60]$ with probability $2 / 3$ (note: here $\theta \in[0,90]$)

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If distance between x, y after projecting is greater than a, they will be hashed to different buckets
- So, if $d(x, y) \geq 2 a$, we have that $d(x, y) \cos \theta>a$ for $\theta \in[0,60]$

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If distance between x, y after projecting is greater than a, they will be hashed to different buckets
- So, if $d(x, y) \geq 2 a$, we have that $d(x, y) \cos \theta>a$ for $\theta \in[0,60]$
- It holds that $\theta \in[0,60]$ with probability $2 / 3$ (note: here $\theta \in[0,90]$)

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- In conclusion, the family described has been

$$
(a / 2,2 a, 1 / 2,1 / 3)-\text { sensitive }
$$

- Family can be amplified as desired
\rightarrow If families for arbitrary $d_{1}<d_{2}$ (and not just $d_{1}=a / 2, d_{2}=2 a$), and also

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- In conclusion, the family described has been

$$
(a / 2,2 a, 1 / 2,1 / 3)-\text { sensitive }
$$

- Family can be amplified as desired
- If families for arbitrary $d_{1}<d_{2}$ (and not just $d_{1}=a / 2, d_{2}=2 a$), and also for arbitrary-dimensional vector spaces are desired, special efforts are

Materials / Outlook

- See Mining of Massive Datasets, chapter 3.4-3.7
- See http://www.mmds.org/ for further resources
- Next lecture: "Map Reduce / Workflow Systems I"
- See Mining of Massive Datasets 2.1-2.4

