
Finding Similar Items I

Alexander Schönhuth

Bielefeld University
April 14, 2022

TODAY

Announcements

I Lecture will be recorded, edited and posted (as usual)

I From today, topics are relevant for exam

I Reminder: Please assign yourself to a group in the LernraumPlus,
if desired; individual work possible, of course

I Groups were supposed to be up to 2-3 people, to collectively
submit solutions and present in tutorials

Learning Goals

I Turning documents into sets + shingles

I Computing the similarity of sets + minhashing

Finding Similar Items: Introduction

FINDING SIMILAR ITEMS

Fundamental problem in data mining: retrieve pairs of similar
elements of a dataset.

Applications

I Detecting plagiarism in a set of documents

I Identifying near-identical mirror pages during web searches

I Identifying documents from the same author

I Collaborative Filtering
I Online Purchases (Amazon: suggestions based on ’similar’

customers)
I Movie Ratings (Netflix: suggestions based on ’similar’ users)

ISSUES

Consider a dataset of N items, for example: N webpages or N text
documents.

I Comparing all items requires O(N2) runtime.
I Ok for small N.
I If N ≈ 106, we have 1012 comparisons. Maybe not OK!

I How to efficiently compute similarity if items themselves are
large?

I Similarity works well for sets of items. How to turn data into
sets of items?

OVERVIEW

From mmds.org

I Shingling: turning text files into sets

I Minhashing: computing similarity for large sets

I Locality Sensitive Hashing: avoids O(N2) comparisons by
determining candidate pairs

mmds.org

Shingles
–

Turning Documents into Sets

JACCARD SIMILARITY

DEFINITION [JACCARD SIMILARITY]
Consider two sets S and T. The Jaccard similarity SIM(S,T) is defined as

SIM(S,T) =
|S ∩ T|
|S ∪ T| (1)

the ratio of elements in the intersection and in the union of S and T.

SIM(S,T) = 3
8

SHINGLES: DEFINITION

I Document = large string of characters
I k-shingle: a substring of a particular length k
I Idea: A document is set of k-shingles
I Example: document = “acadacc′′, k-shingles for k = 2:

{ac, ad, ca, cc, da}

I We can now compute Jaccard similarity for two documents by
considering them as sets of shingles.

I Example: documents D1 = ”abcd”,D2 = ”dbcd” using 2-shingles yields
D1 = {ab, bc, cd},D2 = {bc, cd, db}, so
SIM(D1,D2) = |{bc,cd}|

|{ab,bc,cd,db}| = 2/4 = 1/2

SHINGLES: DEFINITION

I Issue: Determining right size of k.
I k large enough such that any particular k-shingle appears in document

with low probability (k = 5, yielding 2565 different shingles on 256
different characters, ok for emails)

I too large k yields too large universe of elements (example: k = 9 means
2569 = (28)9 = 272 on the order of number of atoms in the universe)

I Solution if necessary k is too large: hash shingles to buckets, such that
buckets are evenly covered, and collisions are rare

I We would like to compute Jaccard similarity for pairs of sets
I But: even when hashed, size of the universe of elements (= # buckets

when hashed) may be prohibitive to do that fast
I What to do?

Minhashing
–

Rapidly Computing Similarity of Sets

SETS AS BITVECTORS

I Representing sets as bitvectors
I Length of bitvectors is size of universal set
I For example, when hashed, length of bitvector = number of

buckets
I Entries zero if element not in set, one if element in set

I Does not reflect to really store the sets, but nice visualization

SETS AS BITVECTORS: THE CHARACTERISTIC MATRIX

DEFINITION [CHARACTERISTIC MATRIX]
Given C sets over a universe R, the characteristic matrix
M ∈ {0, 1}|R|×|C| is defined to have entries

M(r, c) =

{
0 if r 6∈ c
1 if r ∈ c

(2)

for r ∈ R, c ∈ C.

Characteristic matrix of four sets (S1, S2, S3, S4) over universal set {a, b, c, d, e}
From mmds.org

mmds.org

PERMUTATIONS

DEFINITION [BIJECTION,PERMUTATION]

I A bijection is a map π : S→ S such that

I π(x) = π(y) implies x = y (π is injective)
I For all y ∈ S there is x ∈ S such that π(x) = y (π is surjective)

I A permutation is a bijection

π : {1, ...,m} → {1, ...,m} (3)

Example: A permutation on {1, 2, 3, 4, 5}may map

1→ 4, 2→ 3, 3→ 1, 4→ 5 and 5→ 2

PERMUTING ROWS OF CHARACTERISTIC MATRIX

A characteristic matrix of four sets (S1, S2, S3, S4) over universal set
{a, b, c, d, e} and a permutation of its rows 1→ 3, 2→ 1, 3→ 5, 4→ 4, 5→ 2

MINHASH - DEFINITION

Given

I a characteristic matrix with m rows and a column S

I a permutation π on the rows, that is π : {1, ...,m} → {1, ...,m} is
a bijection

DEFINITION [MINHASH]
The minhash function hπ on S is defined by

hπ(S) = min
i∈{1,...,m}

{π(i) | S[i] = 1}

MINHASH - DEFINITION

DEFINITION [MINHASH]
The minhash function hπ on S is defined by

hπ(S) = min
i∈{1,...,m}

{π(i) | S[i] = 1}

EXPLANATION
The minhash of a column S relative to permutation π is

I after reordering rows according to the permutation π

I the first row in which a one in S appears

MINHASH - EXAMPLE

EXAMPLE
Let

I 1 corresponds to a, 2 to b, ...

I π : 1→ 3, 2→ 1, 3→ 5, 4→ 4, 5→ 2 and

hπ(S1) = 3, hπ(S2) = 5, hπ(S3) = 1, hπ(S4) = 3

MINHASHING AND JACCARD SIMILARITY

Given

I two columns (sets) S1,S2 of a characteristic matrix

I a randomly picked permutation π on the rows (on {1, ...,m})

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that hπ(S1) = hπ(S2) is SIM(S1,S2).

MINHASH AND JACCARD SIMILARITY - PROOF

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that hπ(S1) = hπ(S2) is SIM(S1,S2).

PROOF.
Distinguish three different classes of rows:

I Type X rows have a 1 in both S1,S2

I Type Y rows have a 1 in only one of S1,S2

I Type Z rows have a 0 in both S1,S2

Let x be the number of type X rows and y the number of type Y rows.

I So x = |S1 ∩ S2| and x + y = |S1 ∪ S2|
I Hence

SIM(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

=
x

x + y
(4)

MINHASH AND JACCARD SIMILARITY - PROOF

PROOF. (CONT.)

I Consider the probability that h(S1) = h(S2)

I Imagine rows to be permuted randomly, and proceed from the
top

I The probability to encounter type X before type Y is

x
x + y

(5)

I If first non type Z row is type X, then h(S1) = h(S2)
I If first non type Z row is type Y, then h(S1) 6= h(S2)

I So h(S1) = h(S2) happens with probability (5), which by (4)
concludes the proof.

MINHASH - INTERMEDIATE SUMMARY / EXPANSION

OF IDEA

I Computing a minhash means turning a set into one number

I For different sets, numbers agree with probability equal to their
Jaccard similarity.

I Can we expand on this idea? Can we compute (ensembles of)
numbers that enable us to determine their Jaccard similarity?

I Immediate idea: compute several minhashes. The fraction of
times the minhashes of two sets agree equals their Jaccard
similarity.

I Several sufficiently well chosen minhashes yield a minhash
signature.

MINHASH SIGNATURES

Consider

I the m rows of the characteristic matrix

I n permutations {1, ...,m} → {1, ...,m}
I the corresponding minhash functions

h1, ..., hn : {0, 1}m → {1, ...,m}
I and a particular column S ∈ {0, 1}m

+ hi(S) ∈ {1, ...,m} for any 1 ≤ i ≤ n

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGS of S given h1, ..., hn is the array

[h1(S), ..., hn(S)] ∈ {1, ...,m}n

MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGS of S given h1, ..., hn is the array

[h1(S), ..., hn(S)] ∈ {1, ...,m}n

Meaning: Computing the minhash signature for a column S turns

I the binary-valued array of length m that represents S
↔ S ∈ {0, 1}m

I into an m-valued array of length n
↔ [h1(S), ..., hn(S)] ∈ {1, ...,m}n

Because n < m (often n << m), the minhash signature is a reduced
representation of a set.

SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations h1, ..., hn.

DEFINITION [SIGNATURE MATRIX]
The signature matrix SIG is a matrix with n rows and as many
columns as the characteristic matrix (i.e. the number of sets), where
entries SIGij are defined by

SIGij = hi(Sj) (6)

where Sj refers to the j-th column in the characteristic matrix.

SIGNATURE MATRICES: FACTS

Let M be a signature matrix.

I Because usually n << m, that is n is much smaller than m, a
signature matrix is much smaller than the original characteristic
matrix.

I The probability that SIGij1 = SIGij2 for two sets Sj1 ,Sj2 equals the
Jaccard similarity SIM(Sj1 ,Sj2)

I The expected number of rows where columns j1, j2 agree,
divided by n, is SIM(Sj1 ,Sj2).

SIGNATURE MATRICES: ISSUES

Issue:
I For large m, it is time-consuming / storage-intense to determine

permutations
π : {1, ...,m} → {1, ...,m}

I Re-sorting rows relative to a permutation is even more expensive

Solution:
I Instead of permutations, use hash functions (watch the index shift!)

h : {0, ...,m− 1} → {0, ...,m− 1}

I Likely, a hash function is not a bijection, so at times
I places two rows in the same bucket
I leaves other buckets empty

I Effects are negligible for our purposes, however

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix SIG: before iterations

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix SIG: after initialization

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 1: first row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End first row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

First iteration: row # 0 has 1’s in S1 and S4, so put
SIG11 = SIG14 = min{∞, h1(0)} = 0 + 1 mod 5 = 1,
SIG21 = SIG24 = min{∞, h2(0)} = 3 · 0 + 1 mod 5 = 1

Signature matrix after considering first row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 2: second row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End second row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Second iteration: row #1 has 1 in S3, so put
SIG13 = min{∞, h1(1)} = 1 + 1 mod 5 = 2,
SIG23 = min{∞, h2(1)} = 3 + 1 mod 5 = 4.

Signature matrix M after considering second row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 3: third row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End third row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1’s in S2 and S4, so put
SIG12 = min{∞, h1(2)} = 2 + 1 mod 5 = 3,
SIG14 = min{SIG14, h1(2)} = min(1, 2 + 1 mod 5 = 3) = 1,
SIG22 = min{∞, h2(2)} = 6 + 1 mod 5 = 2,
SIG24 = min{SIG24, h2(2)} = min(1, 6 + 1 mod 5 = 2) = 1

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix after considering third row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 4: fourth row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End fourth row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Fourth iteration: SIG11 stays 1, SIG21 changes to 0, SIG13 stays
2, SIG23 changes to 0, SIG14 stays 1, SIG24 changes to 0

Signature matrix after considering fourth row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 5: fifth (final) row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End fifth (final) row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix after considering fifth row: final signature matrix

COMPUTING SIGNATURE MATRICES: EXAMPLE

Signature matrix after considering fifth row: final signature matrix

I Estimates for Jaccard similarity: SIM(S1,S3) = 1
2 , SIM(S1,S4) = 1

I True Jaccard similarities: SIM(S1,S3) = 1
4 , SIM(S1,S4) = 2

3

I Estimates will be better when raising number of hash functions
that is increasing number of rows of the signature matrix

Minhashing
–

Speeding Up Computations

SPEEDING UP MINHASHING: BASIC IDEA

I Minhashing is time-consuming, because iterating through all m
rows of M necessary, and m is large (huge!)

I Thought experiment:
I Recall: minhash is first row in permuted order with a 1
I Consider permutations π : {1, ..., m̄} → {1, ..., m̄} for m̄ < m
I Consider only examining the first m̄ of the permuted rows
I Speed up of a factor of m

m̄

SPEEDING UP MINHASHING: JUSTIFICATION

I Minhashing is about estimates

I Minhashing on subsets of the real sets may provide good
estimates already?

I How do estimates behave more concretely?

SPEEDING UP MINHASHING: EXAMPLE

Characteristic matrix for three
sets S1, S2, S3. m = 8, m̄ = 4.

I Truth: SIM(S1,S2) = 1
2 , SIM(S1,S3) =

1
5 , SIM(S2,S3) = 1

2

I Estimate for first four rows:
SIM(S1,S2) = 0

I Estimate for last four rows:
SIM(S1,S2) = 2

3 on average across
randomly picked hash functions

I Overall estimate (expected across randomly
picked hash functions): SIM(S1,S2) = 1

3 ,
Ok estimate for two hash functions

SPEEDING UP MINHASHING: MOTIVATION

I Continue thought experiment...

I Consider computing signature matrices by only examining
m̄ < m rows in the characteristic matrix, and using permutations
π : {1, ..., m̄} → {1, ..., m̄}

I By the way: the chosen m̄ rows need not be the first m̄ rows∞ as
symbol in the signature matrix SIG

SPEEDING UP MINHASHING: ISSUES

I There may be columns where all first m̄ rows contain zeroes

I Using the algorithm discussed previously, we will have∞
symbols in the signature matrix

Signature matrix M with ∞ remaining (not referring to example from slide before)

SPEEDING UP MINHASHING: ISSUES

I Situation: Much faster to compute SIG, but SIG(i, c) =∞ in some
places (how many? is this bad?)

I How to deal with that? Can we nevertheless work with only
m̄ < m rows and compute sufficiently accurate estimates for the
Jaccard similarity of two columns?

SPEEDING UP MINHASHING: MOTIVATION

Situation:
I Compute Jaccard similarities for pairs of columns, while possibly
I SIG(i, c) =∞ for some (i, c)

I Algorithm for estimating Jaccard similarity:
I Row by row, by iterative updates,
I maintain count of rows a where columns agree
I maintain count of rows d where columns disagree
I Estimate SIM as a

a+d

Three cases:
1. Both columns do not contain∞ in row: update counts as usual (either

a→ a + 1 or d→ d + 1

2. Only one column has∞ in row:
I Let two columns be c1, c2, and SIG(i, c1) = ∞, but SIG(i, c2) 6= ∞:
I It follows that SIG(i, c1) > SIG(i, c2)
I So increase count of disagreeing rows by one (d → d + 1)

3. Both columns have∞ in a row: unclear situation, skip updating counts

SPEEDING UP MINHASHING: MOTIVATION

Summary: One determines a
a+d as estimate for SIM(c1, c2)

I Counts rely on less rows than before. How reliable are they?

I However, since each permutation only refers to m̄ < m rows, we
can afford more permutations

I The one makes counts less reliable, while the other compensates
for it

I Can we control the corresponding trade-off to our favour?

SPEEDING UP MINHASHING: ISSUES TO RESOLVE

I Let T be the set of elements of the universal set that correspond
to the initial m̄ rows in the characteristic matrix.

I When executing the above algorithm on only these m̄ rows, we
determine

|S1 ∩ S2 ∩ T|
|(S1 ∪ S2) ∩ T|

(7)

as an estimate for the true Jaccard similarity |S1 ∩ S2|
|S1 ∪ S2| .

I If T is chosen randomly, the expected value of (7) is the Jaccard
similarity SIM(S1,S2)

I But: there may be some disturbing variation to this estimate

SPEEDING UP MINHASHING: STRATEGY

Idea in practice using hash functions

I Divide m rows into m
m̄ blocks of m̄ rows each

I For each hash function h : {0, ..., m̄− 1} → {0, ..., m̄− 1}, compute
minhash values for each block of m̄ rows

I Yields m
m̄ minhash values for a single hash function, instead of just one

I Extreme: If m
m̄ is large enough, only one hash function may be necessary

I Possible advantage: By using all m rows, one balances out errors in the
particular estimates on only m̄ of the m rows:

I The overall x of the type X rows are distributed across blocks of m̄
rows

I Likewise, the overall y type Y rows are distributed across the
blocks

SPEEDING UP MINHASHING: EXAMPLE

Characteristic matrix for three
sets S1, S2, S3. m = 8, m̄ = 4.

I Truth: SIM(S1,S2) = 1
2 , SIM(S1,S3) =

1
5 , SIM(S2,S3) = 1

2

I Estimate for first four rows:
SIM(S1,S2) = 0

I Estimate for last four rows:
SIM(S1,S2) = 2

3 on average across
randomly picked hash functions

I Overall estimate (expected across randomly
picked hash functions): SIM(S1,S2) = 1

3 ,
Ok estimate for two hash functions

CURRENT STATUS: ISSUES STILL REMAINING

I Estimating similarity for each pair of sets may be infeasible even
when using minhash signatures just because number of pairs is
too large

I Apart from parallelism nothing can help

I Question/Idea: Can we determine candidate pairs, and only
compute similarity for them, knowing similarity will be small
for all others?

I Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

SUMMARY OF CURRENT STATUS

From mmds.org

I Shingling: turning text files into sets + Done!

I Minhashing: computing similarity for large sets + Done!

I Locality Sensitive Hashing: avoids O(N2) comparisons by
determining candidate pairs + next lecture!

mmds.org

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 3.1–3.3

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Finding Similar Items II”

I See Mining of Massive Datasets 3.4–3.6

http://www.mmds.org/

