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Introduction



ON-LINE ADVERTISING

I Web applications support themselves through advertising,
rather than subscriptions
I Radio and television use ads as primary resource
I Newspapers and magazines make use of hybrid approches

I Most lucrative venue for advertising is search
I The adwords model is about matching ads with search queries
I Algorithms are greedy and online
I We will treat this here

I Advertising items in online stores: collaborative filtering
+ treated in lecture Big Data Analytics



ONLINE ADVERTISING: OPPORTUNITIES

I Direct placement of ads for fee/commission (Craig’s List; eBay;
auto trading)

I Displaying ads at fixed rate per impression (display + download of
ad)

I Online stores display ads to maximize user interest (display for
free)



ONLINE ADVERTISING OPPORTUNITIES
SEARCH QUERIES

SEARCH QUERIES

I Ads placed in response to search query

I Advertisers bid for right to have ad shown

I Advertisers pay only if ad is clicked on
+ referred to as impression

I Ads are selected through complex process, involving
I search terms
I amount of bid
I click-through rate of particular ad
I total budget spent by advertiser



DIRECT AD PLACEMENT
APPROPRIATENESS

I Ads displayed in response to query terms
I use inverted index of words in analogy to search engine itself
I alternatively, advertiser specifies parameters to be stored in

database

I Rank ads by appropriateness. Consider
I advertiser spam
I sorting out ads that are too similar



DIRECT AD PLACEMENT
ATTRACTIVENESS

I Ranking by attractiveness is an alternative approach

I Try to estimate the attractiveness. Consider:
I Placement of ads in (appropriateness) ranking enhances

attractiveness
I Attractiveness works relative to query terms
I Ads whose attractiveness cannot be estimated (because of being

new) deserve to be shown until attractiveness can be measured



DISPLAY ADS: ISSUES

I Ads should be shown to interested people

I Traditional media work with newspapers, magazines,
broadcasts catering to particular interests

I The Web works with exploring individual user interests. For
example:
I Screen Facebook group membership
I Screen emails (in gmail account) for frequently used terms
I Time spent on sites serving particular topics
I Screen search queries for frequently occurring terms
I Browse through bookmark folders

I Raises (enormous!) privacy issues. Trade-off:
I No subscription fees for various services
I Automatically raised information can get into hands of real people



Online Algorithms and the Competitive Ratio



ONLINE ALGORITHMS

I Matching ads with queries are often online algorithms

I Offline Algorithms:
I All data needed by algorithm is available initially
I Algorithm can access data in arbitrary order
I Algorithm produces answer accordingly

I Online Algorithms:
I Not all data can be accessed before answer is required
I Recall data stream mining: data appears in particular order, not all

data can be stored etc.



SELECTING ADS OFFLINE
THOUGHT EXPERIMENT

I Selecting ads for queries is easy offline

I Consider, for example, a month full of search queries

I Issue: Assign ads to queries in a most profitable way

I Offline: assign ads to queries that maximizes both
I search engine revenue
I number of impressions for each advertiser
I But: cannot wait for a month until displaying ad on query



ONLINE VERSUS OFFLINE ALGORITHM
EXAMPLE

I Manufacturer A1 and A2 both have 100 EUR budget to spend

I A1 bids 10 cents on search term ’chesterfield’

I A2 bids 20 cents on search terms ’chesterfield’ and ’sofa’

I Imagine:
I Scenario 1: Lots of queries for ’sofa’, few for ’chesterfield’

+ Need to assign ’chesterfield’ to A1
I Scenario 2: Lots of search queries for ’chesterfield’

+ Queries can be given to A2; both will spend entire budget

I Offline: Knowing all queries beforehand allows to assign them to
bids optimally

I Online: Mistakes are possible; overspending A2’s bids on
chesterfield queries



GREEDY ALGORITHMS

I Many online algorithms are greedy algorithms

I Greedy algorithms decide based on actual and past input

I They maximize some appropriate function



EXAMPLE: GREEDY ALGORITHM

Consider earlier situation, involving manufacturers A1 and A2 and
their bids on search terms ’chesterfield’ and ’sofa’.

Greedy Algorithm
Assign each query to the highest bidder:

I Assign query to A2 if A2 has budget left.

I Continue assigning queries to A1 as long as A1 has budget.



EXAMPLE: GREEDY ALGORITHM

Greedy Algorithm

I Result: Assign first 500 ’chesterfield’ and ’sofa’ queries to A2;
continue to assign following 1000 ’chesterfield’ queries to A1

I Extreme scenario: 500 ’chesterfield’ queries arrive followed by 500
’sofa’ queries

I Offline algorithm assigns chesterfield queries to A1, and
sofa queries to A2

I Online algorithm assigns chesterfield queries to A2, nothing
to A1



ONLINE ALGORITHMS: THE COMPETITIVE RATIO

I Online algorithms can only be worse than best offline algorithms

I How much worse are they? Good online algorithms differ only
by little from the offline version

I Consider a particular problem, and an instance I

I Let Copt(I) be the value that one obtains when running the
optimum offline algorithm

I Let Con(I) that one obtains when running the online algorithm
under consideration



ONLINE ALGORITHMS: THE COMPETITIVE RATIO

I Let Copt(I) be the value that one obtains when running the
optimum offline algorithm on instance I

I Let Con(I) that one obtains when running the online algorithm
under consideration on instance I

DEFINITION [COMPETITIVE RATIO]
The competitive ratio of an online algorithm is a constant c < 1, such
that for any instance I

Con(I) ≥ c · Copt(I) (1)

REMARK: Given an online algorithm, a competitive ratio is not
guaranteed to exist.



ONLINE ALGORITHMS: THE COMPETITIVE RATIO

DEFINITION [COMPETITIVE RATIO]
The competitive ratio of an online algorithm is (if it exists) a constant
c < 1, such that for any instance I

Con(I) ≥ c · Copt(I)

EXPLANATION: For an online algorithm with competitive ratio c, the
value of the objective function is at least c times the optimal value one
can achieve using an offline algorithm.



EXAMPLE: COMPETITIVE RATIO I

Consider earlier situation, involving manufacturers A1 and A2 and their bids
on search terms ’chesterfield’ and ’sofa’.
I Extreme scenario: 500 ’chesterfield’ queries arrive followed by 500 ’sofa’

queries
I Offline algorithm assigns chesterfield to A1, and sofa to A2

+ Revenue: 150 EUR
I Online algorithm assigns chesterfield to A2, nothing to A1

+ Revenue: 100 EUR
I So, on this instance I:

Con(I) =
2
3
· Copt(I) (2)

I As c is a lower bound over all possible I, we obtain

c ≤ 2
3

(3)



EXAMPLE: COMPETITIVE RATIO II

Consider earlier situation, involving manufacturers A1 and A2 and their bids
on search terms ’chesterfield’ and ’sofa’.
I Extreme scenario: 500 ’chesterfield’ queries arrive followed by 500 ’sofa’

queries

I Consider to raise A1’s bid to 20− ε cents per bid, then:
I Offline algorithm assigns chesterfield to A1, and sofa to A2

+ Revenue now: 200− 500 · ε ε→0−→ 200 EUR
I Online algorithm assigns chesterfield to A2, nothing to A1, because

still A2’s bid is greater than A1’s + Revenue still: 100 EUR
I On this instance, c approaches 1

2

I One can indeed show that
c =

1
2



The Matching Problem



MATCHES AND PERFECT MATCHES

DEFINITION [BIPARTITE GRAPHS]
A bipartite graph G = (V,E) with vertices V and edges E is referred
to as bipartite iff

I there are V1,V2 ⊂ V such that

V = V1 ∪̇ V2 and E ⊂ (V1 × V2)

Bipartite graph with E ⊂ {1, 2, 3, 4} × {a, b, c, d}
Adopted from mmds.org

mmds.org


MATCHES AND PERFECT MATCHES

DEFINITION [MATCHINGS]

I A matching M ⊂ E is a set of edges such that for each vertex v ∈ V there
is at most one e ∈ M in which v appears

I A perfect matching is a matching that covers every node
I A matching is maximal iff any other matching is at most as large

Adopted from mmds.org

I (1, a), (2, b), (3, d) is a matching, but
not a perfect matching

I (1, c), (2, b), (3, d), (4, a) is a perfect
matching

I (1, c), (2, b), (3, d), (4, a) is also
maximal

I Note: every perfect matching is also
maximal

mmds.org


GREEDY ALGORITHM FOR MAXIMAL MATCHING

I Offline algorithms for maximal matchings have been studied for
decades

I The algorithms run in nearly O(n2) time for graphs on n vertices

I Here, we consider online algorithms (also well studied)

I Greedy algorithm for maximal matching:
I Consider edges in any order
I Add edge to matching iff both ends are not yet covered by any

edge collected so far



GREEDY ALGORITHM FOR MAXIMAL MATCHING

I Greedy algorithm for maximal matching:
I Consider edges in any order
I Add edge to matching iff both ends are not yet covered by any

edge collected so far

I Example:
I Consider vertices from example before in order

(1, a), (1, c), (2, b), (3, b), (3, d), (4, a)
I This yields non-maximal matching (1, a), (2, b), (3, d)
I Any order starting with (1, a), (3, b) implies matching of size 2



COMPETITIVE RATIO FOR GREEDY MATCHING

I In the example, we had optimal matching of size 4 and greedy
matching of size 2

I That implies that 1
2 is an upper bound for the competitive ratio c

for Greedy matching, that is

c ≤ 1
2

(4)

I We would like to prove that 1
2 is the competitive ratio



COMPETITIVE RATIO FOR GREEDY MATCHING

Notation

I Let Mo be a maximal matching

I Let Mg be the matching computed by the Greedy algorithm

I Let L be the left nodes matched in Mo, but not in Mg

I Let R be the right nodes connected by edges to any vertex in L

Claim: Every vertex from R is matched in Mg.

Proof: Suppose that r ∈ R is not matched in Mg. At some point, the
greedy algorithm considers (l, r) with l ∈ L. At that point, however,
neither l ∈ L nor r ∈ R were encountered by the Greedy algorithm. So
(l, r) will be included in the matching, a contradiction! �

Conclusion: Every node from R is matched in Mg.



COMPETITIVE RATIO FOR GREEDY MATCHING

I In Mo, all nodes in L are matched with nodes from R, implying

|L| ≤ |R| (5)

I Every node in R is matched in Mg, implying

|R| ≤ |Mg| (6)

I Together, this yields
|L| ≤ |Mg| (7)



COMPETITIVE RATIO FOR GREEDY MATCHING

I From before, we have
|L| ≤ |Mg| (8)

I Only nodes in L can be matched in Mo, but not in Mg, implies

|Mo| ≤ |Mg|+ |L| (9)

I (8) and (9) together imply

|Mo| ≤ 2|Mg| or |Mg| ≥
1
2
|Mo| (10)

That means that the competitive ratio c is at least 1
2 , so with the above

example, that

c =
1
2



GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, Sections 8.1, 8.2, 8.3:

http:
//infolab.stanford.edu/˜ullman/mmds/ch8.pdf

http://infolab.stanford.edu/~ullman/mmds/ch8.pdf
http://infolab.stanford.edu/~ullman/mmds/ch8.pdf

