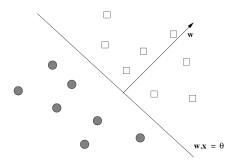
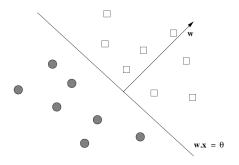
Learning in Big Data Analytics Support Vector Machines

Alexander Schönhuth

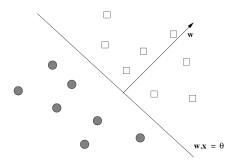
Bielefeld University November 17, 2021 Perceptrons Revisited



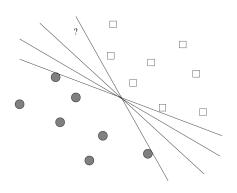
- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space



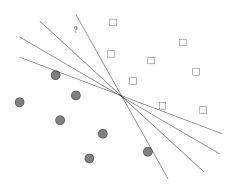
- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space



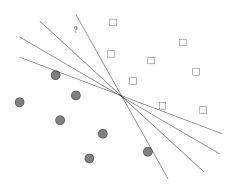
- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space



- ► Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?



- ► Several half spaces (normal vectors) divide training data
- ▶ *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?



- ► Several half spaces (normal vectors) divide training data
- ► *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?

SUPPORT VECTOR MACHINES: MOTIVATION

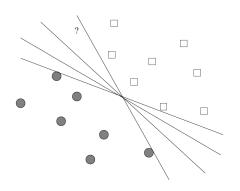
- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that
 - penalizes misclassified points
 - penalizes points correctly classified but too close to hyperplane (to a lesser extent)

SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize loss function that
 - penalizes misclassified points
 - penalizes points correctly classified but too close to hyperplane (to a lesser extent)

SUPPORT VECTOR MACHINES: MOTIVATION

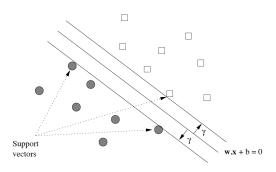
- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize *loss function* that
 - ► penalizes misclassified points
 - penalizes points correctly classified but too close to hyperplane (to a lesser extent)



- ► Outer hyperplanes come very close to data points
- ► So, inner hyperplanes are likely the better choice
- ► ™ Try to make explicit!

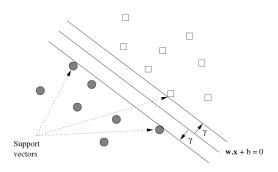
Separable Data

SEPARABLE DATA



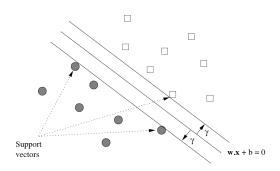
- *Goal:* Select hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ that maximizes distance γ
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)

SEPARABLE DATA



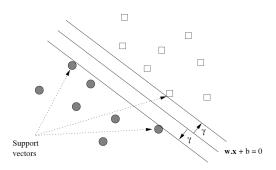
- *Goal:* Select hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ that maximizes distance γ
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)

SUPPORT VECTORS



- \blacktriangleright Two parallel hyperplanes at distance γ touch one or more of support vectors
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)

SUPPORT VECTORS



- lacktriangle Two parallel hyperplanes at distance γ touch one or more of *support vectors*
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w}, b , maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w} , b, maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ▶ There is no optimal γ

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w} , b, maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal γ

Problem badly formulated

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w} , b, maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal γ

Problem badly formulated Try again!

- ▶ Data set (\mathbf{x}_i, y_i) , i = 1, ..., n as before; let $H := \{\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0\}$ be the hyperplane given by \mathbf{w} and b.
- ▶ Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between \mathbf{x}_i and H

▶ *Solution*: Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying \mathbf{w} , b, maximize γ such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)

- ▶ Data set (\mathbf{x}_i, y_i) , i = 1, ..., n as before; let $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$ be the hyperplane given by \mathbf{w} and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between \mathbf{x}_i and H.

▶ *Solution:* Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$y_i(\mathbf{w}\mathbf{x} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying \mathbf{w} , b, maximize γ such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)

- ▶ Data set (\mathbf{x}_i, y_i) , i = 1, ..., n as before; let $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$ be the hyperplane given by \mathbf{w} and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between \mathbf{x}_i and H.

▶ *Solution:* Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying \mathbf{w} , b, maximize γ such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)

- ▶ Data set (\mathbf{x}_i, y_i) , i = 1, ..., n as before; let $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$ be the hyperplane given by \mathbf{w} and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

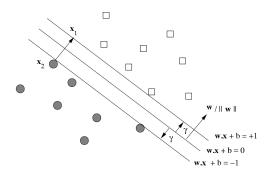
be the distance between \mathbf{x}_i and H.

▶ *Solution:* Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying **w**, *b*, maximize γ such that

$$d(\mathbf{x}_i, H) \ge \gamma$$
 for all $i = 1, ..., n$ (4)



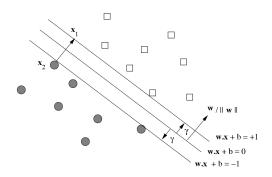
- \mathbf{w} , b, γ determined according to (3),(4)
- $ightharpoonup x_2$ is support vector on lower hyperplane, so by (3), $wx_2 + b = -1$
- Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$



- \mathbf{w} , b, γ determined according to (3),(4)
- $ightharpoonup x_2$ is support vector on lower hyperplane, so by (3), $wx_2 + b = -1$
- Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$



- \mathbf{w} , b, γ determined according to (3),(4)
- $ightharpoonup x_2$ is support vector on lower hyperplane, so by (3), $wx_2 + b = -1$
- ▶ Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$ (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$ (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$

We obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{8}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$ (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$

We obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{8}$$

Because $\mathbf{ww} = ||\mathbf{w}||^2$, and by further regrouping, we conclude that

$$\gamma = \frac{1}{||\mathbf{w}||} \tag{9}$$

Let dataset (\mathbf{x}_i, y_i) , i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying \mathbf{w} , b, minimize $||\mathbf{w}||$ subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (10)

Let dataset (\mathbf{x}_i, y_i) , i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying \mathbf{w} , b, minimize $||\mathbf{w}||$ subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (10)

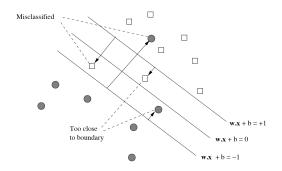
Optimizing under Constraints

- ► Topic is broadly covered
- Many packages can be used
- ► Target function $(||\mathbf{w}||)^2 = \sum_i w_i^2$ quadratic; well manageable

EXAMPLE

Non Separable Data

NON SEPARABLE DATA SETS

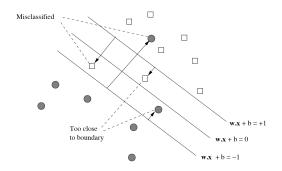


Situation:

- ► Some points misclassified, some too close to boundary

 ** bad points
- ► *Non separable data*: any choice of w, b yields bad points

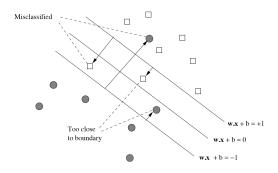
NON SEPARABLE DATA SETS



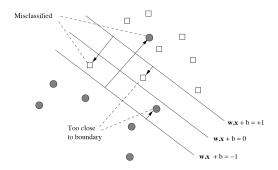
Situation:

- ► Some points misclassified, some too close to boundary

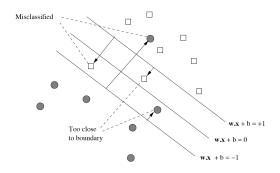
 ** bad points
- ► *Non separable data*: any choice of **w**, *b* yields bad points



- ► *Situation:* No hyperplane can separate the data points correctly
- ► Approach:
 - Determine appropriate penalties for bad points
 - Solve original problem, by involving penalties



- ► *Situation*: No hyperplane can separate the data points correctly
- ► *Approach*:
 - ► Determine appropriate penalties for bad points
 - Solve original problem, by involving penalties



- ► *Situation:* No hyperplane can separate the data points correctly
- ► *Approach*:
 - ► Determine appropriate penalties for bad points
 - ► Solve original problem, by involving penalties

Let (\mathbf{x}_i, y_i) , i = 1, ...n be training data, where

- $ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$
- ▶ $y_i \in \{-1, +1\}$

and let **w** = $(w_1, ..., w_d)$.

Let (\mathbf{x}_i, y_i) , i = 1, ...n be training data, where

$$ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$$

▶
$$y_i \in \{-1, +1\}$$

and let $\mathbf{w} = (w_1, ..., w_d)$.

Minimize the following function:

$$f(\mathbf{w}, b) = \frac{1}{2} \sum_{j=1}^{d} w_j^2 + C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}$$
 (11)

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- ▶ Minimizing ||w|| equivalent to minimizing monotone function of ||w||
 Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$

- C is a regularization parameter
 - Large C: minimize misclassified points, but accept narrow margin
 - Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w||

 Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$

C is a regularization parameter

Large C: minimize misclassified points, but accept narrow margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- C is a regularization parameter
 - Large C: minimize misclassified points, but accept narrow margin
 Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- ► *C* is a regularization parameter
 - ► Large *C*: minimize misclassified points, but accept narrow margin
 - ► Small C: accept misclassified points, but widen margin

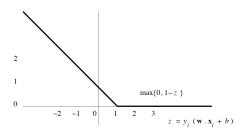
$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

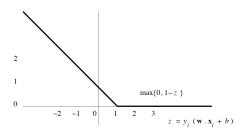
- ► *C* is a regularization parameter
 - ► Large *C*: minimize misclassified points, but accept narrow margin
 - ► Small C: accept misclassified points, but widen margin

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$
 (12)



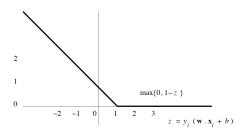
- ▶ $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ▶ The worse x_i is located the greater $L(x_i, y_i)$

$$L(\mathbf{x}_{i}, y_{i}) = \max\{0, 1 - y_{i}(\sum_{j=1}^{d} w_{j}x_{ij} + b)\}$$
(12)



- ► $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ▶ The worse x_i is located the greater $L(x_i, y_i)$

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{i=1}^d w_i x_{ij} + b)\}$$
 (12)



- ▶ $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ► The worse \mathbf{x}_i is located the greater $L(\mathbf{x}_i, y_i)$

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}\$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

Reflecting:

- ▶ If x_i is on right side with sufficient margin: nothing to be done
- ightharpoonup Otherwise adjust w_i to have x_i better placed

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

Reflecting:

- ▶ If x_i is on right side with sufficient margin: nothing to be done
- ightharpoonup Otherwise adjust w_i to have \mathbf{x}_i better placed

GENERAL / FURTHER READING

Literature

► Mining Massive Datasets, Chapter 12, Section 3: http://infolab.stanford.edu/~ullman/mmds/ch12.pdf

Thank you for listening!

