# Learning in Big Data Analytics Support Vector Machines

Alexander Schönhuth



Bielefeld University November 17, 2021 Perceptrons Revisited





- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space





- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space





- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space







- ► Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?







- ► Several half spaces (normal vectors) divide training data
- ▶ *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?







- ► Several half spaces (normal vectors) divide training data
- ► *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?





#### SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that
  - penalizes misclassified points
  - penalizes points correctly classified but too close to hyperplane (to a lesser extent)



# SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize loss function that
  - penalizes misclassified points
  - penalizes points correctly classified but too close to hyperplane (to a lesser extent)



#### SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*, i.e. the distance between data points and half space
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize *loss function* that
  - ► penalizes misclassified points
  - penalizes points correctly classified but too close to hyperplane (to a lesser extent)





- ► Outer hyperplanes come very close to data points
- ► So, inner hyperplanes are likely the better choice
- ► ™ Try to make explicit!





Separable Data



#### SEPARABLE DATA



- *Goal:* Select hyperplane  $\mathbf{w} \cdot \mathbf{x} + b = 0$  that maximizes distance  $\gamma$
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)



#### SEPARABLE DATA



- *Goal:* Select hyperplane  $\mathbf{w} \cdot \mathbf{x} + b = 0$  that maximizes distance  $\gamma$
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)



# SUPPORT VECTORS



- $\blacktriangleright$  Two parallel hyperplanes at distance  $\gamma$  touch one or more of support vectors
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)



# SUPPORT VECTORS



- lacktriangle Two parallel hyperplanes at distance  $\gamma$  touch one or more of *support vectors*
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)

Let  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$  be a training data set, where  $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$ .

PROBLEM: By varying  $\mathbf{w}, b$ , maximize  $\gamma$  such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)



Let  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$  be a training data set, where  $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$ .

PROBLEM: By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

#### Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields  $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ▶ There is no optimal  $\gamma$



Let  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$  be a training data set, where  $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$ .

PROBLEM: By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

#### Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields  $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal  $\gamma$

Problem badly formulated



Let  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$  be a training data set, where  $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$ .

PROBLEM: By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (1)

#### Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields  $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal  $\gamma$

Problem badly formulated Try again!



- ▶ Data set  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n as before; let  $H := \{\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0\}$  be the hyperplane given by  $\mathbf{w}$  and b.
- ▶ Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between  $\mathbf{x}_i$  and H

▶ *Solution*: Impose additional constraint: consider only combinations  $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$  such that for support vectors  $\mathbf{x}$ 

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)



- ▶ Data set  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n as before; let  $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$  be the hyperplane given by  $\mathbf{w}$  and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between  $\mathbf{x}_i$  and H.

▶ *Solution:* Impose additional constraint: consider only combinations  $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$  such that for support vectors  $\mathbf{x}$ 

$$y_i(\mathbf{w}\mathbf{x} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)



- ▶ Data set  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n as before; let  $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$  be the hyperplane given by  $\mathbf{w}$  and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between  $\mathbf{x}_i$  and H.

▶ *Solution:* Impose additional constraint: consider only combinations  $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$  such that for support vectors  $\mathbf{x}$ 

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying  $\mathbf{w}$ , b, maximize  $\gamma$  such that

$$d(\mathbf{x}_i, H) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (4)



- ▶ Data set  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n as before; let  $H := {\mathbf{x} \mid \mathbf{w}\mathbf{x} + b = 0}$  be the hyperplane given by  $\mathbf{w}$  and b.
- ► Let

$$d(\mathbf{x}_i, H) := \min_{\mathbf{x}} \{ d(\mathbf{x}_i, \mathbf{x}) \mid \mathbf{w}\mathbf{x} + b = 0 \}$$
 (2)

be the distance between  $\mathbf{x}_i$  and H.

▶ *Solution:* Impose additional constraint: consider only combinations  $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$  such that for support vectors  $\mathbf{x}$ 

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (3)

• *Good Formulation:* By varying **w**, *b*, maximize  $\gamma$  such that

$$d(\mathbf{x}_i, H) \ge \gamma$$
 for all  $i = 1, ..., n$  (4)





- $\mathbf{w}$ , b,  $\gamma$  determined according to (3),(4)
- $ightharpoonup x_2$  is support vector on lower hyperplane, so by (3),  $wx_2 + b = -1$
- Let  $x_1$  be the projection of  $x_2$  onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$







- $\mathbf{w}$ , b,  $\gamma$  determined according to (3),(4)
- $ightharpoonup x_2$  is support vector on lower hyperplane, so by (3),  $wx_2 + b = -1$
- Let  $x_1$  be the projection of  $x_2$  onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$







- $\mathbf{w}$ , b,  $\gamma$  determined according to (3),(4)
- $ightharpoonup x_2$  is support vector on lower hyperplane, so by (3),  $wx_2 + b = -1$
- ▶ Let  $x_1$  be the projection of  $x_2$  onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{5}$$





That is, further,  $x_1$  is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

That is, further,  $x_1$  is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting  $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$  (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$



That is, further,  $x_1$  is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting  $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$  (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$

We obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{8}$$



That is, further,  $x_1$  is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{6}$$

Substituting  $\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}$  (5) into (6) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{7}$$

We obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{8}$$

Because  $\mathbf{ww} = ||\mathbf{w}||^2$ , and by further regrouping, we conclude that

$$\gamma = \frac{1}{||\mathbf{w}||} \tag{9}$$



Let dataset  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n be as before.

**EQUIVALENT PROBLEM FORMULATION:** 

By varying  $\mathbf{w}$ , b, minimize  $||\mathbf{w}||$  subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (10)



Let dataset  $(\mathbf{x}_i, y_i)$ , i = 1, ..., n be as before.

**EQUIVALENT PROBLEM FORMULATION:** 

By varying  $\mathbf{w}$ , b, minimize  $||\mathbf{w}||$  subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (10)

#### Optimizing under Constraints

- ► Topic is broadly covered
- Many packages can be used
- ► Target function  $(||\mathbf{w}||)^2 = \sum_i w_i^2$  quadratic; well manageable



# **EXAMPLE**



Non Separable Data



# NON SEPARABLE DATA SETS



#### Situation:

- ► Some points misclassified, some too close to boundary

  \*\* bad points
- ► *Non separable data*: any choice of w, b yields bad points





# NON SEPARABLE DATA SETS



#### Situation:

- ► Some points misclassified, some too close to boundary

  \*\* bad points
- ► *Non separable data*: any choice of **w**, *b* yields bad points







- ► *Situation:* No hyperplane can separate the data points correctly
- ► Approach:
  - Determine appropriate penalties for bad points
  - Solve original problem, by involving penalties





- ► *Situation*: No hyperplane can separate the data points correctly
- ► *Approach*:
  - ► Determine appropriate penalties for bad points
  - Solve original problem, by involving penalties







- ► *Situation:* No hyperplane can separate the data points correctly
- ► *Approach*:
  - ► Determine appropriate penalties for bad points
  - ► Solve original problem, by involving penalties





Let  $(\mathbf{x}_i, y_i)$ , i = 1, ...n be training data, where

- $ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$
- ▶  $y_i \in \{-1, +1\}$

and let **w** =  $(w_1, ..., w_d)$ .



Let  $(\mathbf{x}_i, y_i)$ , i = 1, ...n be training data, where

$$ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$$

▶ 
$$y_i \in \{-1, +1\}$$

and let  $\mathbf{w} = (w_1, ..., w_d)$ .

Minimize the following function:

$$f(\mathbf{w}, b) = \frac{1}{2} \sum_{j=1}^{d} w_j^2 + C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}$$
 (11)



$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- ▶ Minimizing ||w|| equivalent to minimizing monotone function of ||w||
   Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and  $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$ 

- C is a regularization parameter
  - Large C: minimize misclassified points, but accept narrow margin
  - Small C: accept misclassified points, but widen margin



$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| 

   Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and  $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$ 

C is a regularization parameter

Large C: minimize misclassified points, but accept narrow margin



$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- C is a regularization parameter
  - Large C: minimize misclassified points, but accept narrow margin
     Small C: accept misclassified points, but widen margin



$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- ► *C* is a regularization parameter
  - ► Large *C*: minimize misclassified points, but accept narrow margin
  - ► Small C: accept misclassified points, but widen margin



$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ■ Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- ► *C* is a regularization parameter
  - ► Large *C*: minimize misclassified points, but accept narrow margin
  - ► Small C: accept misclassified points, but widen margin



$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$
 (12)



- ▶  $L(\mathbf{x}_i, y_i) = 0$  iff  $\mathbf{x}_i$  on the correct side of hyperplane with sufficient margin
- ▶ The worse  $x_i$  is located the greater  $L(x_i, y_i)$



$$L(\mathbf{x}_{i}, y_{i}) = \max\{0, 1 - y_{i}(\sum_{j=1}^{d} w_{j}x_{ij} + b)\}$$
(12)



- ►  $L(\mathbf{x}_i, y_i) = 0$  iff  $\mathbf{x}_i$  on the correct side of hyperplane with sufficient margin
- ▶ The worse  $x_i$  is located the greater  $L(x_i, y_i)$



$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{i=1}^d w_i x_{ij} + b)\}$$
 (12)



- ▶  $L(\mathbf{x}_i, y_i) = 0$  iff  $\mathbf{x}_i$  on the correct side of hyperplane with sufficient margin
- ► The worse  $\mathbf{x}_i$  is located the greater  $L(\mathbf{x}_i, y_i)$



$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}\$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

#### Reflecting:

- ▶ If  $x_i$  is on right side with sufficient margin: nothing to be done
- ightharpoonup Otherwise adjust  $w_i$  to have  $x_i$  better placed



Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (13)

#### Reflecting:

- ▶ If  $x_i$  is on right side with sufficient margin: nothing to be done
- ightharpoonup Otherwise adjust  $w_i$  to have  $\mathbf{x}_i$  better placed

# GENERAL / FURTHER READING

#### Literature

► Mining Massive Datasets, Chapter 12, Section 3: http://infolab.stanford.edu/~ullman/mmds/ch12.pdf



Thank you for listening!

