Learning in Big Data Analytics Support Vector Machines

Alexander Schönhuth

Bielefeld University
November 17, 2021

Perceptrons Revisited

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- What to do if data cannot be separated (is non-separable)?

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- What to do if data cannot be separated (is non-separable)?

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin, i.e. the distance between data points and half space
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin, i.e. the distance between data points and half space
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin, i.e. the distance between data points and half space
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that
- penalizes misclassified points
- penalizes points correctly classified but too close to hyperplane (to a lesser extent)

Perceptron Revisited

- Outer hyperplanes come very close to data points
- So, inner hyperplanes are likely the better choice
- Try to make explicit!

Separable Data

Separable Data

- Goal: Select hyperplane $\mathbf{w} \cdot \mathbf{x}+b=0$ that maximizes distance γ
- Intuition: The further away data from hyperplane, the more certain their classification
- Increases chances to correctly classify unseen data (to generalize)

SEparable Data

- Goal: Select hyperplane $\mathbf{w} \cdot \mathbf{x}+b=0$ that maximizes distance γ
- Intuition: The further away data from hyperplane, the more certain their classification
- Increases chances to correctly classify unseen data (to generalize)

Support Vectors

- Two parallel hyperplanes at distance γ touch one or more of support vectors
\Rightarrow In most cases, d-dimensional data set has $d+1$ support vectors (but there can be more)

Support Vectors

- Two parallel hyperplanes at distance γ touch one or more of support vectors
- In most cases, d-dimensional data set has $d+1$ support vectors (but there can be more)

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{1}
\end{equation*}
$$

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where
$\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.
Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{1}
\end{equation*}
$$

Issue

- Replacing \mathbf{w} and b by $2 \mathbf{w}$ and $2 b$ yields $y_{i}\left(2 \mathbf{w} \mathbf{x}_{i}+2 b\right) \geq 2 \gamma$
- There is no optimal γ

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{1}
\end{equation*}
$$

Issue

- Replacing \mathbf{w} and b by $2 \mathbf{w}$ and $2 b$ yields $y_{i}\left(2 \mathbf{w} \mathbf{x}_{i}+2 b\right) \geq 2 \gamma$
- There is no optimal γ

Problem badly formulated

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{1}
\end{equation*}
$$

Issue

- Replacing \mathbf{w} and b by $2 \mathbf{w}$ and $2 b$ yields $y_{i}\left(2 \mathbf{w} \mathbf{x}_{i}+2 b\right) \geq 2 \gamma$
- There is no optimal γ

Problem badly formulated Try again!

Problem Formulation: Solution

- Data set $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ as before; let $H:=\{\mathbf{x} \mid \mathbf{w} \mathbf{x}+b=0\}$ be the hyperplane given by \mathbf{w} and b.

$$
d\left(\mathbf{x}_{i}, H\right):=\min \left\{d\left(\mathbf{x}_{i}, \mathbf{x}\right) \mid \mathbf{w} \mathbf{x}+b=0\right\}
$$

be the distance between \mathbf{x}_{i} and H.

- Solution: Impose additional constraint: consider only combinations $\mathrm{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that for support vectors x
- Good Formulation: By varying \mathbf{w}, b, maximize γ such that

$$
d\left(x_{i}, H\right) \geq \gamma \text { for all } i=1, \ldots, n
$$

and (3) applies

Problem Formulation: Solution

- Data set $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ as before; let $H:=\{\mathbf{x} \mid \mathbf{w} \mathbf{x}+b=0\}$ be the hyperplane given by \mathbf{w} and b.
- Let

$$
\begin{equation*}
d\left(\mathbf{x}_{i}, H\right):=\min _{x}\left\{d\left(\mathbf{x}_{i}, \mathbf{x}\right) \mid \mathbf{w} \mathbf{x}+b=0\right\} \tag{2}
\end{equation*}
$$

be the distance between \mathbf{x}_{i} and H.

- Solution: Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$
y_{i}(w x+b) \in\{-1,+1\}
$$

- Good Formulation: By varying \mathbf{w}, b, maximize γ such that

$$
d\left(x_{i}, H\right) \geq \gamma \text { for all } i=1, \ldots, n
$$

and (3) applies

Problem Formulation: Solution

- Data set $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ as before; let $H:=\{\mathbf{x} \mid \mathbf{w} \mathbf{x}+b=0\}$ be the hyperplane given by \mathbf{w} and b.
- Let

$$
\begin{equation*}
d\left(\mathbf{x}_{i}, H\right):=\min _{x}\left\{d\left(\mathbf{x}_{i}, \mathbf{x}\right) \mid \mathbf{w} \mathbf{x}+b=0\right\} \tag{2}
\end{equation*}
$$

be the distance between \mathbf{x}_{i} and H.

- Solution: Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$
\begin{equation*}
y_{i}(\mathbf{w} \mathbf{x}+b) \in\{-1,+1\} \tag{3}
\end{equation*}
$$

- Good Formulation: By varying \mathbf{w}, b, maximize γ such that

$$
d\left(\mathbf{x}_{i}, H\right) \geq \gamma \quad \text { for all } i=1, \ldots, n
$$

and (3) applies

Problem Formulation: Solution

- Data set $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ as before; let $H:=\{\mathbf{x} \mid \mathbf{w} \mathbf{x}+b=0\}$ be the hyperplane given by \mathbf{w} and b.
- Let

$$
\begin{equation*}
d\left(\mathbf{x}_{i}, H\right):=\min _{x}\left\{d\left(\mathbf{x}_{i}, \mathbf{x}\right) \mid \mathbf{w} \mathbf{x}+b=0\right\} \tag{2}
\end{equation*}
$$

be the distance between x_{i} and H.

- Solution: Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$
\begin{equation*}
y_{i}(\mathbf{w} \mathbf{x}+b) \in\{-1,+1\} \tag{3}
\end{equation*}
$$

- Good Formulation: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
d\left(\mathbf{x}_{i}, H\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{4}
\end{equation*}
$$

and (3) applies

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (3),(4)
$\rightarrow x_{2}$ is support vector on lower hyperplane, so by (3), $w x_{2}+b=-1$
\rightarrow Let \mathbf{x}_{1} be the projection of \mathbf{x}_{2} onto upper hyperplane:

$$
\begin{equation*}
x_{1}=x_{2}+2 \gamma \frac{\mathbf{w}}{\|w\|} \tag{5}
\end{equation*}
$$

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (3),(4)
- \mathbf{x}_{2} is support vector on lower hyperplane, so by (3), $\mathbf{w} \mathbf{x}_{2}+b=-1$

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (3),(4)
- \mathbf{x}_{2} is support vector on lower hyperplane, so by (3), $\mathbf{w} \mathbf{x}_{2}+b=-1$
- Let \mathbf{x}_{1} be the projection of \mathbf{x}_{2} onto upper hyperplane:

$$
\begin{equation*}
\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|} \tag{5}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{6}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{6}
\end{equation*}
$$

Substituting $\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$ (5) into (6) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{7}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{6}
\end{equation*}
$$

Substituting $\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$ (5) into (6) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{7}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{2}+b+2 \gamma \frac{\mathbf{w w}}{\|\mathbf{w}\|}=1 \tag{8}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{6}
\end{equation*}
$$

Substituting $\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$ (5) into (6) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{7}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{2}+b+2 \gamma \frac{\mathbf{w} \mathbf{w}}{\|\mathbf{w}\|}=1 \tag{8}
\end{equation*}
$$

Because $\mathbf{w w}=\|\mathbf{w}\|^{2}$, and by further regrouping, we conclude that

$$
\begin{equation*}
\gamma=\frac{1}{\|\mathbf{w}\|} \tag{9}
\end{equation*}
$$

Alternative Problem Formulation III

Let dataset $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ be as before.
EqUiValent Problem Formulation:
By varying \mathbf{w}, b, minimize $\|\mathbf{w}\|$ subject to

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq 1 \quad \text { for all } i=1, \ldots, n \tag{10}
\end{equation*}
$$

Alternative Problem Formulation III

Let dataset $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ be as before.
EQuivalent Problem Formulation:
By varying \mathbf{w}, b, minimize $\|\mathbf{w}\|$ subject to

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq 1 \quad \text { for all } i=1, \ldots, n \tag{10}
\end{equation*}
$$

Optimizing under Constraints

- Topic is broadly covered
- Many packages can be used
- Target function $(\|\mathbf{w}\|)^{2}=\sum_{i} w_{i}^{2}$ quadratic; well manageable

Example

Non Separable Data

Non Separable Data Sets

Situation:

- Some points misclassified, some too close to boundary bad points
- Non separable data: any choice of \mathbf{w}, b yields bad points

Non Separable Data Sets

Situation:

- Some points misclassified, some too close to boundary bad points
- Non separable data: any choice of \mathbf{w}, b yields bad points

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:
- Determine appropriate penalties for bad points
- Solve original problem, by involving penalties

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:
- Determine appropriate penalties for bad points
- Solve original problem, by involving penalties

Non Separable Data: Motivation II

Let $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots n$ be training data, where

- $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)$,
- $y_{i} \in\{-1,+1\}$
and let $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right)$.

Non Separable Data: Motivation II

Let $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots n$ be training data, where

- $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)$,
- $y_{i} \in\{-1,+1\}$
and let $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right)$.
Minimize the following function:

$$
\begin{equation*}
f(\mathbf{w}, b)=\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{11}
\end{equation*}
$$

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

\rightarrow Minimizing $||w||$ equivalent to minimizing monotone function of $||w|$ ne Minimizing f seeks minimal $\|\mathbf{w}\|$

- Vectors w and training data balaneed in terms of basic units:

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
\rightarrow Vectors w and training data balanced in terms of basic units:

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter
- Large C: minimize misclassified points, but accept narrow margin

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter
- Large C: minimize misclassified points, but accept narrow margin
- Small C: accept misclassified points, but widen margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{12}
\end{equation*}
$$

$\rightarrow L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{12}
\end{equation*}
$$

- $L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{12}
\end{equation*}
$$

- $L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin
- The worse \mathbf{x}_{i} is located the greater $L\left(\mathbf{x}_{i}, y_{i}\right)$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{13}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{13}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Reflecting:

- If \mathbf{x}_{i} is on right side with sufficient margin: nothing to be done
- Otherwise adjust w_{j} to have x_{i} better placed

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{13}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Reflecting:

- If \mathbf{x}_{i} is on right side with sufficient margin: nothing to be done
- Otherwise adjust w_{j} to have \mathbf{x}_{i} better placed

General / Further Reading

Literature

- Mining Massive Datasets, Chapter 12, Section 3: http: / / infolab.stanford.edu/~ullman/mmds/ch12.pdf

Thank you for listening!

