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Supervised Learning



SUPERVISED LEARNING

I There is a functional relationship

f ∗ : Rd → V

we would like to understand, or learn.
I Regression: V = R
I Classification: V = {1, ..., k}

I To learn it, we are given m data points

(xi, f ∗(xi) = yi)i=1,...,m

that reflect this functional relationship.

Final goal: Predict f ∗(x) well on unknown data points x.
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SUPERVISED VERSUS UNSUPERVISED LEARNING

I Unsupervised Learning:
I Given unlabeled data

(xi)i=1,...,m

I Goal: Infer subgroups of data points
I Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points
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SUPERVISED LEARNING: TRAINING

I The idea is to set up a training procedure (an algorithm) that
learns f ∗ from the training data.

I Learning f ∗ means to approximate it by f : Rd → V
sufficiently well, where f ∈M for a certain class of
functionsM.

I In most cases, f ∈M are parameterized by parameters w.
This means that we have to pick an appropriate choice of
parameters w for learning f ∗.
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SUPERVISED LEARNING

I We need to determine a cost (or loss) function C where
C(f , f ∗) measures how well f ∈M approximates f ∗.

I Optimization: Pick f ∈M (by picking the right set of
parameters) that yields small (possibly minimal) cost
C(f , f ∗)

I Generalization: Optimization procedure should address
that f is to approximate f ∗ well on unknown data points.
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LINEAR REGRESSION
EXAMPLE: f : R → R



PERCEPTRON
EXAMPLE: f : R2 → {0, 1}

f R2 −→ {0 = blue, 1 = red}

(x1, x2) 7→

{
1 x2 − x1 > 0
0 x2 − x1 ≤ 0

(1)



SUPERVISED LEARNING
SUMMARY

We need to specify:
I How to set up the data being used for training
I A model classM, for example linear functions
I A cost function C(f , f ∗) that evaluates the goodness of

f ∈M
I An optimization procedure that picks f such that C(f , f ∗) is

minimal, or very small
I Keep in mind that f is to perform well on previously

unseen data
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SUPERVISED LEARNING
NOTATION

I The dataset is given by a design matrix X ∈ Rm×d where m is
the number of data points and d is the number of features

I Each data point xi (a row in X) is assigned to a label yi that
reflects the true functional relationship yi = f ∗(xi), where
further y = (y1, ..., ym) ∈ Vm is the label vector.
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ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I While training data is to pick the optimal set of parameters
(which specify elements fromM), using training and validation
data in combination is for picking hyperparameters

I Hyperparameters can refer to choosing subsets ofM. For
example, depth of a neural network, and widths of hidden
layers. They may also refer to specifications of cost function or
optimization procedure.

I (X(test),y(test)) are never touched during training.

I The final goal is to minimize the cost on the test data.
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ENABLING GENERALIZATION: MODEL
CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

I Choose a class of models that has the right capacity

I Capacity too large: overfitting

I Capacity too small: underfitting
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ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

Let C(f , f ∗) be the cost function. Let w = (w1, ...,wk) be the
parameters specifying elements of fw ∈M.

I Usually, C refers to only known data points. That is, C evaluates
as

C(f , f ∗) =
∑

i

C(f (xi), yi = f ∗(xi)) (2)

where xi runs over all training data points.

I Add a regularization term to cost function, and choose fw that
yields minimal

C(fw, f ∗) + λΩ(w) (3)

I λ is a hyperparameter
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ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

I Prominent examples:
I L1 norm: Ω(w) :=

∑
i |wi|

I L2 norm: Ω(w) :=
∑

i w2
i

I Rationale: Penalize too many non-zero weights
I Virtually less complex model, hence virtually less capacity
I + Prevents overfitting, yields better generalization
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ENABLING GENERALIZATION: OPTIMIZATION
EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.
I Early stopping: Stop the optimization procedure before cost

function reaches an optimum on the training data.
I Dropout: Randomly fix parameters to zero, and optimize

remaining parameters.



Prominent Supervised Learning Model Examples



LINEAR REGRESSION

I Design matrix X ∈ Rm×d, label vector y ∈ Rm

I Model class: Let w ∈ Rd

fw = f (x; w) : Rd −→ R
x 7→ wTx

(4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included inM, by augmenting vectors xi
by an entry 1 (think about this...)

I Cost function (recall yi = f ∗(xi))

C(f , f ∗) :=
1
m
||(f (x1), ..., f (xm))− y||22 =

1
m

m∑
i=1

(f (xi)− yi)
2

(5)
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LINEAR REGRESSION

Optimization

I Solve for
∇wC(fw, f ∗) = 0 (6)

to achieve a minimum. This yields the normal equations

w = (XTX)−1XTy (7)

I Global optimum if XTX is invertible
I Do this on training data (so X = X(train),y = y(train)) only.

Hope that cost on test data is small.
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NORMAL EQUATIONS

I Left: Data points, and the linear function y = w1x that
approximates them best

I Right: Mean squared error (MSE) depending on w1

I Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)
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NEAREST NEIGHBOR CLASSIFICATION

I Consider appropriate distance measure

D : Rd × Rd −→ R+ (8)

I For unknown data point x, determine the closest given
data point

xi∗ := argmini(D(x, xi)) (9)

I Predict label of x as yi∗
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SUPPORT VECTOR MACHINES

I Realization: From (7), write

wTx =

m∑
i=1

αixTxi =

m∑
i=1

αi〈x, xi〉 (10)

I Replace 〈., .〉 by different kernel (i.e. scalar product) k(., .),
that is by computing 〈φ(.), φ(.)〉 for appropriate φ

+ Seek α’s to maximize margin: still easy to optimize both
for regression and classification!
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GENERAL / FURTHER READING

Literature
I Deep Learning, Chapter 5:

https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

