Learning in Big Data Analytics Lecture 2

Alexander Schönhuth

Bielefeld University November 10, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Supervised Learning

There is a functional relationship

$$f^*:\mathbb{R}^d\to V$$

we would like to understand, or learn.

- Regression: $V = \mathbb{R}$
- Classification: $V = \{1, ..., k\}$
- ▶ To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

There is a functional relationship

$$f^*:\mathbb{R}^d\to V$$

we would like to understand, or learn.

• Regression:
$$V = \mathbb{R}$$

• Classification:
$$V = \{1, ..., k\}$$

► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

There is a functional relationship

$$f^*:\mathbb{R}^d\to V$$

we would like to understand, or *learn*.

• Regression:
$$V = \mathbb{R}$$

• Classification:
$$V = \{1, ..., k\}$$

► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

► There is a functional relationship

$$f^*:\mathbb{R}^d\to V$$

we would like to understand, or *learn*.

• Regression:
$$V = \mathbb{R}$$

• Classification: $V = \{1, ..., k\}$

► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

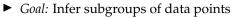
Final goal: Predict $f^*(x)$ well on unknown data points x.

SUPERVISED VERSUS UNSUPERVISED LEARNING

► Unsupervised Learning:

Given unlabeled data

 $(x_i)_{i=1,\ldots,m}$



 Alternative Problem Formulation: Learn the probability distribution

P(**X**)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

that governs the generation of data points

SUPERVISED VERSUS UNSUPERVISED LEARNING

► Unsupervised Learning:

Given unlabeled data

 $(x_i)_{i=1,\ldots,m}$

- ► *Goal:* Infer subgroups of data points
- Alternative Problem Formulation: Learn the probability distribution

$\mathbf{P}(\mathbf{X})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

that governs the generation of data points

EXAMPLE

SUPERVISED VERSUS UNSUPERVISED LEARNING

► Supervised Learning:

Given labeled data

 $(x_i, y_i)_{i=1,\ldots,m}$

- *Goal:* Learn functional relationship $f^* : \mathbb{R}^d \to V$, s.t. $y_i = f^*(x_i)$
- Alternative Problem Formulation: Learn the probability distribution

 $\mathbf{P}(\mathbf{X}, \mathbf{y})$ or $\mathbf{P}(\mathbf{y} \mid \mathbf{X})$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

as a more general version of functional relationship

SUPERVISED VERSUS UNSUPERVISED LEARNING

► Supervised Learning:

Given labeled data

 $(x_i, y_i)_{i=1,\ldots,m}$

• *Goal:* Learn functional relationship $f^* : \mathbb{R}^d \to V$, s.t. $y_i = f^*(x_i)$

 Alternative Problem Formulation: Learn the probability distribution

$$\mathbf{P}(\mathbf{X}, \mathbf{y})$$
 or $\mathbf{P}(\mathbf{y} \mid \mathbf{X})$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

as a more general version of functional relationship

EXAMPLE

SUPERVISED LEARNING: TRAINING

- ► The idea is to set up a *training procedure* (an algorithm) that *learns f*^{*} from the training data.
- Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- In most cases, *f* ∈ *M* are parameterized by parameters w. This means that we have to pick an appropriate choice of parameters w for learning *f**.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SUPERVISED LEARNING: TRAINING

- ► The idea is to set up a *training procedure* (an algorithm) that *learns f*^{*} from the training data.
- Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- In most cases, *f* ∈ *M* are parameterized by parameters w. This means that we have to pick an appropriate choice of parameters w for learning *f**.

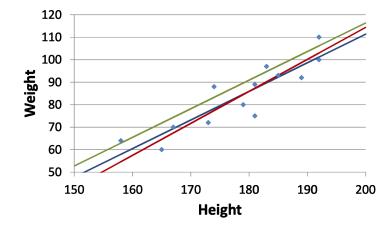
▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- *Optimization*: Pick *f* ∈ *M* (by picking the right set of parameters) that yields small (possibly minimal) cost *C*(*f*,*f**)
- Generalization: Optimization procedure should address that f is to approximate f* well on unknown data points.

- We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- *Optimization*: Pick *f* ∈ *M* (by picking the right set of parameters) that yields small (possibly minimal) cost *C*(*f*,*f**)
- *Generalization*: Optimization procedure should address that *f* is to approximate *f*^{*} well on *unknown data points*.

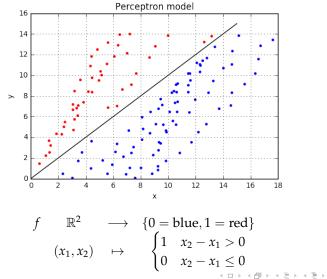
LINEAR REGRESSION

Example: $f : \mathbb{R} \to \mathbb{R}$



PERCEPTRON

EXAMPLE: $f : \mathbb{R}^2 \to \{0, 1\}$



E 590

(1)

SUMMARY

- ► How to set up the data being used for training
- ▶ A model class *M*, for example linear functions
- A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks *f* such that *C*(*f*,*f**) is minimal, or very small
- Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ► A model class *M*, for example linear functions
- A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks *f* such that *C*(*f*,*f**) is minimal, or very small
- Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ► A model class *M*, for example linear functions
- A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks *f* such that *C*(*f*,*f**) is minimal, or very small
- Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ► A model class *M*, for example linear functions
- A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks *f* such that *C*(*f*,*f**) is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ► A model class *M*, for example linear functions
- A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ► An optimization procedure that picks *f* such that *C*(*f*,*f*^{*}) is minimal, or very small
- Keep in mind that *f* is to perform well on previously unseen data

NOTATION

- ► The dataset is given by a *design matrix* $\mathbf{X} \in \mathbb{R}^{m \times d}$ where *m* is the number of data points and *d* is the number of *features*
- ► Each data point x_i (a row in **X**) is assigned to a *label* y_i that reflects the true functional relationship $y_i = f^*(x_i)$, where further $\mathbf{y} = (y_1, ..., y_m) \in V^m$ is the *label vector*.

NOTATION

- ► The dataset is given by a *design matrix* $\mathbf{X} \in \mathbb{R}^{m \times d}$ where *m* is the number of data points and *d* is the number of *features*
- ► Each data point x_i (a row in **X**) is assigned to a *label* y_i that reflects the true functional relationship $y_i = f^*(x_i)$, where further $\mathbf{y} = (y_1, ..., y_m) \in V^m$ is the *label vector*.

Generalization

TRAINING, TEST AND VALIDATION

• Split (\mathbf{X}, \mathbf{y}) into

- training data (X^(train), y^(train))
 validation data (X^(val), y^(val))
 test data (X^(test), y^(test))

- While *training data* is to pick the optimal set of parameters
- ▶ Hyperparameters can refer to choosing subsets of *M*. For
- \blacktriangleright (X^(test), v^(test)) are never touched during training.
- The final goal is to minimize the cost on the test data.

TRAINING, TEST AND VALIDATION

- Split (\mathbf{X}, \mathbf{y}) into
 - ▶ training data (X^(train), y^(train))
 ▶ validation data (X^(val), y^(val))
 ▶ test data (X^(test), y^(test))
- While *training data* is to pick the optimal set of parameters
- ▶ Hyperparameters can refer to choosing subsets of *M*. For
- \blacktriangleright (X^(test), v^(test)) are never touched during training.
- The final goal is to minimize the cost on the test data.

TRAINING, TEST AND VALIDATION

• Split (\mathbf{X}, \mathbf{y}) into

- ▶ training data (X^(train), y^(train))
 ▶ validation data (X^(val), y^(val))
 ▶ test data (X^(test), y^(test))
- While *training data* is to pick the optimal set of parameters
- ▶ Hyperparameters can refer to choosing subsets of *M*. For
- \blacktriangleright (X^(test), y^(test)) are never touched during training.
- The final goal is to minimize the cost on the test data.

TRAINING, TEST AND VALIDATION

- Split (\mathbf{X}, \mathbf{y}) into

 - ▶ training data (X^(train), y^(train))
 ▶ validation data (X^(val), y^(val))
 ▶ test data (X^(test), y^(test))
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and *validation* data in combination is for picking hyperparameters
- ▶ Hyperparameters can refer to choosing subsets of *M*. For
- \blacktriangleright (X^(test), y^(test)) are never touched during training.
- The final goal is to minimize the cost on the test data.

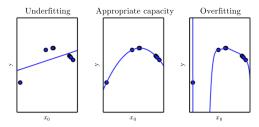
TRAINING, TEST AND VALIDATION

- Split (\mathbf{X}, \mathbf{y}) into

 - ▶ training data (X^(train), y^(train))
 ▶ validation data (X^(val), y^(val))
 ▶ test data (X^(test), y^(test))
- While training data is to pick the optimal set of parameters (which specify elements from *M*), using training and *validation* data in combination is for picking hyperparameters
- ▶ Hyperparameters can refer to choosing subsets of *M*. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
- $(\mathbf{X}^{(\text{test})}, \mathbf{y}^{(\text{test})})$ are never touched during training.
- The final goal is to minimize the cost on the test data.

ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING



Left: Linear functions underfit Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

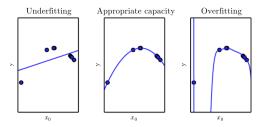
• Choose a class of models that has the right *capacity*

Capacity too large: overfitting

Capacity too small: *underfitting*

ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING



Left: Linear functions underfit Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Choose a class of models that has the right *capacity*
- ► Capacity too large: *overfitting*
- Capacity too small: *underfitting*

ENABLING GENERALIZATION: COST FUNCTION REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

 Usually, C refers to only known data points. That is, C evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
(2)

where x_i runs over all training data points.

• Add a *regularization term* to cost function, and choose f_w that yields minimal

$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w}) \tag{3}$$

•
$$\lambda$$
 is a hyperparameter

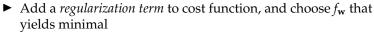
ENABLING GENERALIZATION: COST FUNCTION REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

 Usually, C refers to only known data points. That is, C evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
(2)

where x_i runs over all training data points.



$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w}) \tag{3}$$

• λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION

► Prominent examples:

- $L_1 \text{ norm: } \Omega(\mathbf{w}) := \sum_i |w_i|$
- $L_2 \text{ norm: } \Omega(\mathbf{w}) := \overline{\sum}_i w_i^2$

Rationale: Penalize too many non-zero weights

Virtually less complex model, hence virtually less capacity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: COST FUNCTION

► Prominent examples:

- $L_1 \text{ norm: } \Omega(\mathbf{w}) := \sum_i |w_i|$
- $L_2 \text{ norm: } \Omega(\mathbf{w}) := \sum_i w_i^2$
- Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: COST FUNCTION

- ► Prominent examples:
 - $L_1 \text{ norm: } \Omega(\mathbf{w}) := \sum_i |w_i|$
 - $L_2 \text{ norm: } \Omega(\mathbf{w}) := \overline{\sum}_i w_i^2$
- ► Rationale: Penalize too many non-zero weights
- ► Virtually less complex model, hence virtually less capacity
- Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: OPTIMIZATION Early Stopping, Dropout

Optimization can be an iterative procedure.

- ► *Early stopping*: Stop the optimization procedure before cost function reaches an optimum on the training data.
- Dropout: Randomly fix parameters to zero, and optimize remaining parameters.

Prominent Supervised Learning Model Examples

< □ > < @ > < E > < E > E のQ@

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \quad \mathbb{R}^d \quad \longrightarrow \quad \mathbb{R} \\ \mathbf{x} \quad \mapsto \quad \mathbf{w}^T \mathbf{x}$$
(4)

- *Remark*: Note that the case w^Tx + b can be treated as a special case to be included in *M*, by augmenting vectors x_i by an entry 1 (think about this...)
- Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), ..., f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \quad \mathbb{R}^d \quad \longrightarrow \quad \mathbb{R}$$
$$\mathbf{x} \quad \mapsto \quad \mathbf{w}^T \mathbf{x}$$
(4)

- ▶ *Remark*: Note that the case w^Tx + b can be treated as a special case to be included in *M*, by augmenting vectors x_i by an entry 1 (think about this...)
- Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), \dots, f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \quad \mathbb{R}^d \quad \longrightarrow \quad \mathbb{R}$$
$$\mathbf{x} \quad \mapsto \quad \mathbf{w}^T \mathbf{x}$$
(4)

- *Remark*: Note that the case w^Tx + b can be treated as a special case to be included in *M*, by augmenting vectors x_i by an entry 1 (think about this...)
- Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), ..., f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
(7)

- ► *Global optimum* if **X**^T**X** is invertible
- Do this on *training data* (so X = X^(train), y = y^(train)) only. Hope that cost on test data is small.

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
(7)

► *Global optimum* if **X**^T**X** is invertible

Do this on *training data* (so X = X^(train), y = y^(train)) only. Hope that cost on test data is small.

Optimization

► Solve for

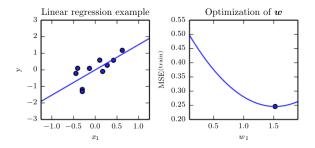
$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
(7)

- ► *Global optimum* if **X**^{*T*}**X** is invertible
- ► Do this on *training data* (so X = X^(train), y = y^(train)) only. Hope that cost on test data is small.

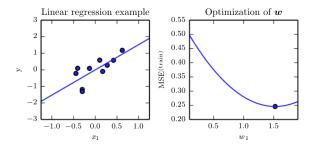
NORMAL EQUATIONS



- *Left*: Data points, and the linear function $y = w_1 x$ that approximates them best
- *Right*: Mean squared error (MSE) depending on w_1

Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the *perceptron* algorithm)

NORMAL EQUATIONS



- *Left*: Data points, and the linear function $y = w_1 x$ that approximates them best
- *Right*: Mean squared error (MSE) depending on w_1
- Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the perceptron algorithm)

NEAREST NEIGHBOR CLASSIFICATION

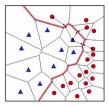
Consider appropriate distance measure

$$D: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}_+ \tag{8}$$

 For unknown data point x, determine the closest given data point

$$\mathbf{x}_{i^*} := \operatorname{argmin}_i(D(\mathbf{x}, \mathbf{x}_i)) \tag{9}$$

• Predict label of **x** as y_{i^*}



NEAREST NEIGHBOR CLASSIFICATION

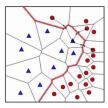
Consider appropriate distance measure

$$D: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}_+ \tag{8}$$

 For unknown data point x, determine the closest given data point

$$\mathbf{x}_{i^*} := \operatorname{argmin}_i(D(\mathbf{x}, \mathbf{x}_i)) \tag{9}$$

► Predict label of **x** as *y*_{*i**}

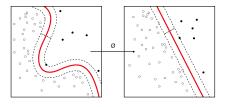


SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^{T}\mathbf{x} = \sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i} = \sum_{i=1}^{m} \alpha_{i} \langle \mathbf{x}, \mathbf{x}_{i} \rangle$$
(10)

- ▶ Replace $\langle ., . \rangle$ by different *kernel* (i.e. scalar product) k(., .), that is by computing $\langle \phi(.), \phi(.) \rangle$ for appropriate ϕ
- Seek α 's to maximize margin: still easy to optimize both for regression and classification!



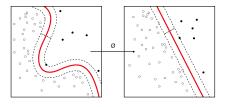
SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^{T}\mathbf{x} = \sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i} = \sum_{i=1}^{m} \alpha_{i} \langle \mathbf{x}, \mathbf{x}_{i} \rangle$$
(10)

Replace (.,.) by different *kernel* (i.e. scalar product) k(.,.), that is by computing (φ(.), φ(.)) for appropriate φ

Seek α 's to maximize margin: still easy to optimize both for regression and classification!

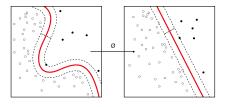


SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^{T}\mathbf{x} = \sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i} = \sum_{i=1}^{m} \alpha_{i} \langle \mathbf{x}, \mathbf{x}_{i} \rangle$$
(10)

- ► Replace ⟨.,.⟩ by different *kernel* (i.e. scalar product) k(.,.), that is by computing ⟨φ(.), φ(.)⟩ for appropriate φ
- Seek α 's to maximize margin: still easy to optimize both for regression and classification!



GENERAL / FURTHER READING

Literature

Deep Learning, Chapter 5: https://www.deeplearningbook.org/

