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SUPERVISED LEARNING

» There is a functional relationship
foRISV

we would like to understand, or learn.
» Regression: V =R
» Classification: V = {1, ..., k}

» To learn it, we are given m data points

(i f*(%i) = Yi)i=1,..m
that reflect this functional relationship.

Final goal: Predict f*(x) well on unknown data points x.
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Unsupervised Learning:
» Given unlabeled data

» Goal: Infer subgroups of data points
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Unsupervised Learning:
» Given unlabeled data

» Goal: Infer subgroups of data points
» Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points

UNIVERSITAT
BIELEFELD



N)



SUPERVISED VERSUS UNSUPERVISED LEARNING

» Supervised Learning:
» Given labeled data
(X, Yi)i=1,...,m

» Goal: Learn functional relationship f* : R — V,
sty = f*(xi)
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Supervised Learning:

» Given labeled data
(X0, Yi)i=1,....m
» Goul: Learn functional relationship f* : RY — V,
sty = f*(xi)
» Alternative Problem Formulation: Learn the probability
distribution
P(X,y) or P(y[X)

as a more general version of functional relationship
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SUPERVISED LEARNING: TRAINING

» The idea is to set up a training procedure (an algorithm) that
learns f* from the training data.

> Learning f* means to approximate itby f : RY — V
sufficiently well, where f € M for a certain class of
functions M.
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SUPERVISED LEARNING: TRAINING

» The idea is to set up a training procedure (an algorithm) that
learns f* from the training data.

> Learning f* means to approximate itby f : RY — V
sufficiently well, where f € M for a certain class of
functions M.

» In most cases, f € M are parameterized by parameters w.

This means that we have to pick an appropriate choice of
parameters w for learning f*.
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SUPERVISED LEARNING

» We need to determine a cost (or loss) function C where
C(f,f*) measures how well f € M approximates f*.

» Optimization: Pick f € M (by picking the right set of
parameters) that yields small (possibly minimal) cost

Clf.f")
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SUPERVISED LEARNING

» We need to determine a cost (or loss) function C where
C(f,f*) measures how well f € M approximates f*.

» Optimization: Pick f € M (by picking the right set of
parameters) that yields small (possibly minimal) cost
Clf.f7)

» Generalization: Optimization procedure should address
that f is to approximate f* well on unknown data points.
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LINEAR REGRESSION
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PERCEPTRON
EXAMPLE: f:R? — {0,1}

Perceptron model
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SUPERVISED LEARNING

SUMMARY
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions
» A cost function C(f,f*) that evaluates the goodness of
feM
» An optimization procedure that picks f such that C(f,f*) is
minimal, or very small
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions

» A cost function C(f,f*) that evaluates the goodness of
feM

» An optimization procedure that picks f such that C(f,f*) is
minimal, or very small

» Keep in mind that f is to perform well on previously
unseen data
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SUPERVISED LEARNING

NOTATION

> The dataset is given by a design matrix X € R"*? where m is
the number of data points and d is the number of features
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SUPERVISED LEARNING

NOTATION

> The dataset is given by a design matrix X € R"*? where m is
the number of data points and d is the number of features

» Each data point x; (a row in X) is assigned to a label y; that
reflects the true functional relationship y; = f*(x;), where
further y = (y1, ..., ym) € V"™ is the label vector.
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ENABLING GENERALIZATION:

TRAINING, TEST AND VALIDATION

» Split (X,y) into

(train) , (train)

» training data (X
» validation data (X("al) yaby
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ENABLING GENERALIZATION

TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(rn) y(train)
» validation data (X(Val)’y(val))
» test data (X(‘esﬂ,y(test))
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into
> training data (X(rn) y(train)

> validation data (X(*®) | y(val)
» test data (X(‘esﬂ’ y(test))

» While training data is to pick the optimal set of parameters
(which specify elements from M), using training and validation
data in combination is for picking hyperparameters
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into
> training data (X(rn) y(train)

> validation data (X(*®) | y(val)
» test data (X(‘esﬂ’ y(test))

» While training data is to pick the optimal set of parameters
(which specify elements from M), using training and validation
data in combination is for picking hyperparameters

» Hyperparameters can refer to choosing subsets of M. For
example, depth of a neural network, and widths of hidden
layers. They may also refer to specifications of cost function or
optimization procedure.

> (X(test) yltesh)) are never touched during training.
» The final goal is to minimize the cost on the test data.
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ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Underfitting Appropriate capacity Overfitting
e®
- / > -
id L
To Ty To

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

» Choose a class of models that has the right capacity
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ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Underfitting Appropriate capacity Overfitting
e®
- / > -
id L
To Ty To

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

» Choose a class of models that has the right capacity
» Capacity too large: overfitting
» Capacity too small: underfitting
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let C(f,f*) be the cost function. Let w = (w1, ..., wy) be the
parameters specifying elements of f,, € M.

» Usually, C refers to only known data points. That is, C evaluates
as
C(f.f*) = D Clf () yi = f* (x) )

where x; runs over all training data points.
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let C(f,f*) be the cost function. Let w = (wq, ...
parameters specifying elements of f,, € M.

, Wy) be the

» Usually, C refers to only known data points. That is, C evaluates
as
C(f.f*) = D Clf () yi = f* (x) )

where x; runs over all training data points.

» Add a regularization term to cost function, and choose f,, that
yields minimal

Clfw,f7) + AQ2(w) ®)

» \is a hyperparameter

UNIVERSITAT
BIELEFELD



ENABLING GENERALIZATION

REGULARIZATION

» Prominent examples:

> Ly norm: Qw) := > |wj

> L, norm: Q(w) := >, w?
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

» Prominent examples:
» L norm: Q(w) ==Y |w;l
> L, norm: Q(w) := >, w?

» Rationale: Penalize too many non-zero weights
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

» Prominent examples:
» L norm: Q(w) ==Y |w;l
> L, norm: Q(w) := >, w?

» Rationale: Penalize too many non-zero weights
» Virtually less complex model, hence virtually less capacity

» = Prevents overfitting, yields better generalization
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ENABLING GENERALIZATION: OPTIMIZATION

EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.

» Early stopping: Stop the optimization procedure before cost
function reaches an optimum on the training data.

» Dropout: Randomly fix parameters to zero, and optimize
remaining parameters.
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Prominent Supervised Learning Model Examples
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

W' X
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

w

(4)

X

» Remark: Note that the case w!x + b can be treated as a
special case to be included in M, by augmenting vectors x;
by an entry 1 (think about this...)
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

w

(4)

X

» Remark: Note that the case w!x + b can be treated as a
special case to be included in M, by augmenting vectors x;
by an entry 1 (think about this...)

» Cost function (recall y; = f*(x;))

CF.f) = 1 Ga) o f on) 1B = Z(fxz—
©)
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations

w = (X"X)"XTy 7)
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations
w = (X"X)"XTy 7)

» Global optimum if X' X is invertible
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations
w = (X"X)"XTy 7)

» Global optimum if X' X is invertible
» Do this on training data (so X = X(r2in) y — y(train)) only,
Hope that cost on test data is small.
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NORMAL EQUATIONS

Linear regression example
3
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Optimization of w
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» Left: Data points, and the linear function y = w;x that

approximates them best

» Right: Mean squared error (MSE) depending on w;
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NORMAL EQUATIONS

Linear regression example Optimization of w
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» Left: Data points, and the linear function y = w;x that
approximates them best

» Right: Mean squared error (MSE) depending on w;

» Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)
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NEAREST NEIGHBOR CLASSIFICATION

» Consider appropriate distance measure
D:R! xR — R,

®)
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NEAREST NEIGHBOR CLASSIFICATION

» Consider appropriate distance measure
D:RxRT — Ry (8)

» For unknown data point x, determine the closest given
data point
x;+ := argmin;(D(x, x;)) 9)

» Predict label of x as ;-
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SUPPORT VECTOR MACHINES

» Realization: From (7), write

m m
wix = Z X x; = Z a; (X, X;) (10)
i=1 i=1
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SUPPORT VECTOR MACHINES

» Realization: From (7), write
m m
wix = Z aix'x; = Z a; (X, X;) (10)
i=1 i=1

» Replace (., .) by different kernel (i.e. scalar product) k(_, .),
that is by computing (¢(.), ¢(.)) for appropriate ¢
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SUPPORT VECTOR MACHINES

» Realization: From (7), write
m m
wix = Z aix'x; = Z a; (X, X;) (10)
i=1 i=1

» Replace (., .) by different kernel (i.e. scalar product) k(_, .),
that is by computing (¢(.), ¢(.)) for appropriate ¢

1= Seek a’s to maximize margin: still easy to optimize both
for regression and classification!
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GENERAL / FURTHER READING

Literature

» Deep Learning, Chapter 5:

https://www.deeplearningbook.org/
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