Learning in Big Data Analytics Lecture 4

Alexander Schönhuth

Bielefeld University
December 8, 2020

RECAP

- Placing web advertisements means assigning ads to search queries
- Advertisers bid on queries
- Advertisers have overall budget
- Ads have click-through rate
- Ads need to be ranked according to bid, budget, rate to maximize revenue for search engine
- Decision need to be taken online, without delay Online algorithms
- Competitive ratio is fraction of revenue acquired with online relative to optimum offline algorithm
- Ads need to be matched with queries Matching algorithms
- Online matching well covered by greedy algorithms
- We computed the competitive ratio of greedy matching

The Adwords Problem

Search Advertizing Principle

Strategy by Overture [2000]

- Overture was company later acquired by Yahoo!
- Advertisers bid on keywords, as appearing in search queries
- All advertisers' links are displayed as response to user who searches keyword, highest-bid first order,
- Advertiser pays if links are clicked on
- Rather useless for users looking primarily for information which are the majority!
- Google adapted idea in system called Adwords
- Advertisers' links displayed separately from generic links

Adwords System

Improvements

- Google displayed only limited list of advertisements: requires to decide which to show
- Advertisers have to specify an overall budget, the amount of money to spend for clicked-on ads in a given time (e.g. a month) more involved algorithmic problem
- Google evaluated click-through rates for ads to maximize profit

The Adwords Problem: Definition

Given

- Set of bids of advertisers for search queries
- Click-through rates for advertiser-query pairs
- Budget for each advertiser (usually specified for a month)
- Limit on number of ads to be displayed

Response to Search Query

- Set of ads no larger than the limit
- Each advertiser in the set has bid on query
- Each advertiser has sufficient budget left to pay bid

The Adwords Problem: Definition

Adwords Algorithm: Target Function

- Value of ad is product of bid and click-through rate
- Revenue of selection of ads is sum of values
- Merit of an online-algorithm for determining selections of ads is revenue obtained over a month
- Competitive ratio is minimum of revenue for sequence of queries divided by revenue obtained for same sequence by optimum offline algorithm

Adwords Problem: Greedy Approach

Simplified Scenario

(a) One ad is shown for each query
(b) All advertisers have the same budget
(c) All click-through rates are the same
(d) All bids are 0 or 1

Alternative formulation of (d): the value (product bid times click-through rate) is the same for each advertiser.

Greedy Algorithm
For each search query, pick arbitrary advertiser

- who bids 1 on query
- has budget left

Adwords Problem: Note on Reality

Matching Bids with Search Queries

- Advertisers bid on sets of words
- Exact matching: eligible when query matches set of words exactly
- Broad matching: eligible also for inexact matches
- Super- or subsets of words
- Words that have similar meaning
- Charging advertisers follows complicated formulas

Charging Advertisers for Clicks

- First price auction: Advertiser is charged the amount they bid
- Second price auction: Pay (approximate) bid of second placed advertiser
- Second price auctions less susceptible to being gamed by advertisers lead to higher revenues for search engines

EXAMPLE

- Two advertisers, A_{1} and A_{2}, each with budget 2
- Two possible queries, x and $y ; A_{1}$ bids only on x, A_{2} on x and y
- Consider sequence of queries $x x y y$
- The Greedy algorithm
- can allocate the two x to A_{2}
- A_{1} does not bid on y, A_{2} has no budget left
- Revenue is 2
- The Offline algorithm
- allocates the two x to A_{1}, and the two y to A_{2}
- Revenue is 4
- The competitive ratio is thus no more than $\frac{2}{4}=\frac{1}{2}$.

The Balance Algorithm

Balance Algorithm

- Slight adaptation of Greedy algorithm
- Assigns query to advertiser who
- bids on the query
- has the largest remaining budget
- Ties are broken arbitrarily

Example Revisited

Situation

- Two advertisers, A_{1} and A_{2}, each with budget 2
- Two possible queries, x and $y ; A_{1}$ bids only on x, A_{2} on x and y
- Consider sequence of queries $x x y y$

Balance Algorithm

- Can put first x to A_{2}
- But then must put the second x to A_{1}
- Puts first y to A_{2}
- A_{2} has no budget left to serve second y
- Revenue is 3 , so competitive ratio is no more than $\frac{3}{4}$

Balance: Lower Bound Competitive Ratio

Situation

- Known upper bound on competitive ratio: $\frac{3}{4}$.
- Lower bound not known
- Idea: Establish a suitable lower bound

Claim
(i) A lower bound for the Balance algorithm, in the simple situation sketched (involving only 2 advertisers), is $\frac{3}{4}$
(ii) This establishes $\frac{3}{4}$ as the competitive ratio of the Balance algorithm

Note that $(i i)$ is an immediate consequence of (i), when combining it with the upper bound we established.

Balance: Lower Bound Competitive Ratio II

Situation

- Two advertisers, A_{1} and A_{2}, each of which has budget B
- We need to show that for an arbitrary sequence of queries, Balance achieves at least $\frac{3}{4}$ times the revenue of the optimum offline algorithm

Immediately Possible Assumptions
(*) Given two sequences of queries, we can focus on the sequence that provably yields a smaller ratio

Suffices to show that the smaller ratio is at least $\frac{3}{4}$
${ }^{* *}$) The optimum offline algorithm assigns each query to one of A_{1} or A_{2}
One can imagine to delete other queries without affecting the revenue, while the revenue of Balance can only decrease

- This yields a sequence whose ratio is smaller, make use of $\left(^{*}\right)$

Balance: Lower Bound Competitive Ratio III

Situation

- Two advertisers, A_{1} and A_{2}, each of which has budget B
- We need to show that for an arbitrary sequence of queries, Balance achieves at least $\frac{3}{4}$ times the revenue of the optimum offline algorithm

Immediately Possible Assumptions

$\left(^{* * *}\right)$ Both budgets are consumed by optimum offline algorithm

- If not, consider reduced, but fully consumed budgets
- Revenue of optimum offline algorithm remains the same
- Note that the assumption of equal budget needs to be skipped
- Ratio also applies for unequal budgets exercise!
- Balance revenue can only decrease

Lowers ratio

Balance: Lower Bound Competitive Ratio IV

(a) Optimum

(b) Balance

Adopted from mmds.org

Balance: Lower Bound Competitive Ratio V

- Some queries assigned to A_{2}

Adopted from mmds.org by Balance could have been assigned to A_{1} by offline optimum (dark queries)

- Let y be number of queries assigned to A_{1} (by Balance)
- Let $x=B-y$ be number of unassigned queries

We seek to show that

$$
\begin{equation*}
y \geq x \quad \text { implying that } \quad y \geq \frac{1}{2} B, \quad \text { yielding } \quad B+y \geq B+\frac{1}{2} B=\frac{3}{2} B \tag{1}
\end{equation*}
$$

Balance: Lower Bound Competitive Ratio Vi

Adopted from mmds.org

- x is also the number of queries left unassigned by Balance
- All x queries must have gone to A_{2} by the optimum algorithm
- Assigning any of the x queries to A_{1} means that A_{1} would have bid on the queries
- So, because A_{1} had budget left, they would have been assigned to A_{1} also by Balance

Balance: Lower Bound Competitive Ratio Vi

Adopted from mmds.org

- Consider queries that are assigned to A_{1} by Optimum (dark in figure)
- Recall that all such queries are assigned by Balance, either to A_{1} or A_{2}

Two Cases
(i) More than half of dark queries are assigned to A_{1} by Balance
(ii) More than half of dark queries are assigned to A_{2} by Balance

Balance: Lower Bound Competitive Ratio VII

Adopted from mmds.org

Two Cases
(i) More than half of dark queries are assigned to A_{1} by Balance
(ii) More than half of dark queries are assigned to A_{2} by Balance

CASE (i): This case immediately implies that $y \geq B / 2$, which implies $y \geq x$, so we are done.

Balance Algorithm: Lower Bound Competitive Ratio VI

Adopted from mmds.org
CASE (ii): More than half of dark queries are assigned to A_{2}.
Consider the last dark query assigned to A_{2} by Balance. At that point, A_{2} 's budget must have been at least as great as $A_{1}{ }^{\prime}$ s budget, because otherwise, by the algorithmic principle of Balance, q would have been assigned to $A_{1}(+)$.

Since more than $\mathrm{B} / 2$ dark queries are assigned to A_{2}, A_{2} 's budget was at most $B / 2$ just before q arrived.
Because of (+), this implies that also A_{1} 's budget was at most $\mathrm{B} / 2$, so A_{1} had already collected at least $\mathrm{B} / 2$ queries. So $y \geq B / 2$, implying $y \geq x$.

Balance Algorithm with Many Bidders

The competitive ratio involving many bidders can be lower than $\frac{3}{4}$, but not much lower.

Worst-Case Scenario

1. There are N advertisers A_{1}, \ldots, A_{N}
2. Each advertiser has budget $B=N$!
3. There are N queries q_{1}, \ldots, q_{N}
4. Advertiser A_{i} bids on queries q_{1}, \ldots, q_{i}
5. The query sequence consists of N rounds, where the i-th round consists of B occurrences of q_{i}

Optimum Offline Algorithm

- Assigns all bids of i-th round to advertiser A_{i}
- Yields revenue $N \cdot B$

Balance Algorithm with Many Bidders

Balance Algorithm

- Assigns all B occurrences of q_{1} equally to all $A_{i}, i=1, \ldots, N$
- Each advertiser gets B / N of queries q_{1}
- Assigns B occurrences of q_{2} equally to all $A_{i}, i=2, \ldots, n$
- Each of A_{2}, \ldots, A_{N} gets $B /(N-1)$ of queries q_{2}
- ...

Balance Algorithm with Many Bidders

Balance Algorithm

- A_{1}, \ldots, A_{N} get $B /(N-i+1)$ of queries q_{i}
- Eventually, budgets of higher-numbered advertisers will be exhausted

Balance Algorithm with Many Bidders

Balance Algorithm

- Eventually, budgets of higher-numbered advertisers will be exhausted
- This happens at lowest round j where

$$
\begin{equation*}
B\left(\frac{1}{N}+\frac{1}{N-1}+\ldots+\frac{1}{N-j+1}\right) \geq B \tag{2}
\end{equation*}
$$

that is, when

$$
\begin{equation*}
\frac{1}{N}+\frac{1}{N-1}+\ldots+\frac{1}{N-j+1} \geq 1 \tag{3}
\end{equation*}
$$

Balance Algorithm with Many Bidders

Balance Algorithm

- Euler showed that

$$
\sum_{i=1}^{k} \frac{1}{i} \xrightarrow{k \rightarrow \infty} \log _{e} k
$$

- In other words, by approximating (3), we are looking for j where

$$
\begin{equation*}
\log _{e} N-\log _{e}(N-j)=1 \quad \text { or, equivalently } \quad \frac{N}{N-j}=e \tag{4}
\end{equation*}
$$

Balance Algorithm with Many Bidders

Balance Algorithm

- In other words, by approximating (3), we are looking for j where

$$
\begin{equation*}
\log _{e} N-\log _{e}(N-j)=1 \quad \text { or, equivalently } \quad \frac{N}{N-j}=e \tag{5}
\end{equation*}
$$

- Solving for j yields

$$
\begin{equation*}
j=N\left(1-\frac{1}{e}\right) \tag{6}
\end{equation*}
$$

Balance Algorithm with Many Bidders

Balance Algorithm

- Solving for j yields $j=N\left(1-\frac{1}{e}\right)$
- So, the approximate revenue of Balance in this worst-case scenario is BN(1- $\frac{1}{e}$)
- This translates into a competitive ratio of

$$
1-\frac{1}{e} \approx 0.63
$$

The Generalized Balance Algorithm

Situation
Advertisers' bids are arbitrary and not just 0 or 1
The following generalization of the Balance algorithm can be shown to have a competitive ratio of $1-\frac{1}{e} \approx 0.63$:
Generalized Balance Algorithm

- Query q arrives
- Advertiser A_{i} has bid x_{i} for query q
- Advertiser A_{i} has fraction f_{i} of his budget left unspent
- Let

$$
\begin{equation*}
\Psi_{i}=x_{i}\left(1-e^{-f_{i}}\right) \tag{7}
\end{equation*}
$$

Then assign q to advertiser A_{i} such that Ψ_{i} is maximum.

General / Further Reading

Literature

- Mining Massive Datasets, Section 8.4
http:
//infolab.stanford.edu/~ullman/mmds/ch8.pdf

