Learning in Big Data Analytics Lecture 4

Alexander Schönhuth

Bielefeld University December 8, 2020

RECAP

- Placing web advertisements means assigning ads to search queries
 - Advertisers bid on queries
 - Advertisers have overall budget
 - Ads have click-through rate
- Ads need to be ranked according to bid, budget, rate to maximize revenue for search engine
- Decision need to be taken online, without delay
 ^{IST} Online algorithms
- Competitive ratio is fraction of revenue acquired with online relative to optimum offline algorithm
- Ads need to be matched with queries
 Matching algorithms
- Online matching well covered by greedy algorithms
- ► We computed the competitive ratio of greedy matching

The Adwords Problem

SEARCH ADVERTIZING PRINCIPLE

Strategy by Overture [2000]

- Overture was company later acquired by Yahoo!
- ► Advertisers bid on keywords, as appearing in search queries
- All advertisers' links are displayed as response to user who searches keyword, highest-bid first order,
- Advertiser pays if links are clicked on
- Rather useless for users looking primarily for information
 which are the majority!
- ► Google adapted idea in system called *Adwords*
- Advertisers' links displayed separately from generic links

ADWORDS SYSTEM

Improvements

- Google displayed only limited list of advertisements: requires to decide which to show
- Advertisers have to specify an overall budget, the amount of money to spend for clicked-on ads in a given time (e.g. a month)
 more involved algorithmic problem
- ► Google evaluated click-through rates for ads to maximize profit

THE ADWORDS PROBLEM: DEFINITION

Given

- Set of bids of advertisers for search queries
- Click-through rates for advertiser-query pairs
- Budget for each advertiser (usually specified for a month)
- Limit on number of ads to be displayed

Response to Search Query

- ► Set of ads no larger than the limit
- Each advertiser in the set has bid on query
- Each advertiser has sufficient budget left to pay bid

THE ADWORDS PROBLEM: DEFINITION

Adwords Algorithm: Target Function

- ► *Value* of ad is product of bid and click-through rate
- *Revenue* of selection of ads is sum of values
- *Merit* of an online-algorithm for determining selections of ads is revenue obtained over a month
- Competitive ratio is minimum of revenue for sequence of queries divided by revenue obtained for same sequence by optimum offline algorithm

Adwords Problem: Greedy Approach

Simplified Scenario

- (a) One ad is shown for each query
- (b) All advertisers have the same budget
- (c) All click-through rates are the same
- (d) All bids are 0 or 1

Alternative formulation of (d): the value (product bid times click-through rate) is the same for each advertiser.

GREEDY ALGORITHM

For each search query, pick arbitrary advertiser

- ▶ who bids 1 on query
- has budget left

Adwords Problem: Note on Reality

Matching Bids with Search Queries

- Advertisers bid on sets of words
- *Exact matching:* eligible when query matches set of words exactly
- Broad matching: eligible also for inexact matches
 - Super- or subsets of words
 - Words that have similar meaning
 - Charging advertisers follows complicated formulas

Charging Advertisers for Clicks

- ► *First price auction:* Advertiser is charged the amount they bid
- ► Second price auction: Pay (approximate) bid of second placed advertiser
- Second price auctions less susceptible to being gamed by advertisers
 Image: Image lead to higher revenues for search engines

EXAMPLE

- ► Two advertisers, *A*₁ and *A*₂, each with budget 2
- Two possible queries, *x* and *y*; A_1 bids only on *x*, A_2 on *x* and *y*
- Consider sequence of queries xxyy
- ► The Greedy algorithm
 - can allocate the two x to A_2
 - ► *A*¹ does not bid on *y*, *A*² has no budget left
 - Revenue is 2
- ► The *Offline algorithm*
 - allocates the two x to A_1 , and the two y to A_2
 - Revenue is 4
- The *competitive ratio* is thus no more than $\frac{2}{4} = \frac{1}{2}$.

THE BALANCE ALGORITHM

BALANCE ALGORITHM

- Slight adaptation of Greedy algorithm
- Assigns query to advertiser who
 - bids on the query
 - ► has the largest remaining budget
 - Ties are broken arbitrarily

EXAMPLE REVISITED

Situation

- ► Two advertisers, *A*₁ and *A*₂, each with budget 2
- Two possible queries, *x* and *y*; A_1 bids only on *x*, A_2 on *x* and *y*
- Consider sequence of queries xxyy

Balance Algorithm

- Can put first x to A_2
- But then must put the second x to A_1
- Puts first y to A_2
- A_2 has no budget left to serve second y
- *Revenue* is 3, so *competitive ratio* is no more than $\frac{3}{4}$

BALANCE: LOWER BOUND COMPETITIVE RATIO

Situation

- Known upper bound on competitive ratio: $\frac{3}{4}$.
- Lower bound not known
- ► *Idea*: Establish a suitable lower bound

CLAIM

- (i) A *lower bound* for the Balance algorithm, in the simple situation sketched (involving only 2 advertisers), is $\frac{3}{4}$
- (ii) This establishes $\frac{3}{4}$ as the *competitive ratio* of the Balance algorithm

Note that (ii) is an immediate consequence of (i), when combining it with the upper bound we established.

BALANCE: LOWER BOUND COMPETITIVE RATIO II

Situation

- ► Two advertisers, *A*₁ and *A*₂, each of which has budget B
- ► We need to show that for an arbitrary sequence of queries, Balance achieves at least ³/₄ times the revenue of the optimum offline algorithm

Immediately Possible Assumptions

- (*) Given two sequences of queries, we can focus on the sequence that provably yields a smaller ratio
 - Suffices to show that the smaller ratio is at least $\frac{3}{4}$
- (**) The optimum offline algorithm assigns each query to one of A_1 or A_2
 - Imagine to delete other queries without affecting the revenue, while the revenue of Balance can only decrease
 - This yields a sequence whose ratio is smaller, make use of (*)

BALANCE: LOWER BOUND COMPETITIVE RATIO III

Situation

- ▶ Two advertisers, *A*₁ and *A*₂, each of which has budget B
- We need to show that for an arbitrary sequence of queries, Balance achieves at least ³/₄ times the revenue of the optimum offline algorithm

Immediately Possible Assumptions

- (***) Both budgets are consumed by optimum offline algorithm
 - ► If not, consider reduced, but fully consumed budgets
 - Revenue of optimum offline algorithm remains the same
 - ► Note that the assumption of equal budget needs to be skipped
 - Ratio also applies for unequal budgets service!
 - ► Balance revenue can only decrease
 - Lowers ratio

BALANCE: LOWER BOUND COMPETITIVE RATIO IV

(b) Balance

Adopted from mmds.org

- By assumption (***), the optimum algorithm consumes all budget 2B
- Upper part of image reflects necessary consequence
- One of the budgets must be fully consumed by Balance
- If not, query would be assigned to neither A₁, A₂, contradicting (**)
- Lower part reflects that A₂'s budget is fully consumed

BALANCE: LOWER BOUND COMPETITIVE RATIO V

- Some queries assigned to A₂ by Balance could have been assigned to A₁ by offline optimum (dark queries)
- Let *y* be number of queries assigned to *A*₁ (by Balance)
- Let x = B y be number of unassigned queries

We seek to show that

$$y \ge x$$
 implying that $y \ge \frac{1}{2}B$, yielding $B + y \ge B + \frac{1}{2}B = \frac{3}{2}B$ (1)

BALANCE: LOWER BOUND COMPETITIVE RATIO VI

- ► *x* is also the number of queries left unassigned by Balance
- All *x* queries must have gone to A_2 by the optimum algorithm
 - Assigning any of the *x* queries to A₁ means that A₁ would have bid on the queries
 - So, because A₁ had budget left, they would have been assigned to A₁ also by Balance

BALANCE: LOWER BOUND COMPETITIVE RATIO VI

- ► Consider queries that are assigned to *A*¹ by Optimum (dark in figure)
- Recall that all such queries are assigned by Balance, either to A₁ or A₂

Two Cases

- (i) More than half of dark queries are assigned to A_1 by Balance
- (ii) More than half of dark queries are assigned to A_2 by Balance

BALANCE: LOWER BOUND COMPETITIVE RATIO VII

Adopted from mmds.org

Two Cases

- (i) More than half of dark queries are assigned to A_1 by Balance
- (ii) More than half of dark queries are assigned to A_2 by Balance

CASE (i): This case immediately implies that $y \ge B/2$, which implies $y \ge x$, so we are done.

BALANCE ALGORITHM: LOWER BOUND COMPETITIVE RATIO VI

Adopted from mmds.org

CASE (ii): More than half of dark queries are assigned to A_2 .

Consider the last dark query assigned to A_2 by Balance. At that point, A_2 's budget must have been at least as great as A_1 's budget, because otherwise, by the algorithmic principle of Balance, q would have been assigned to A_1 (+).

Since more than B/2 dark queries are assigned to A_2 , A_2 's budget was at most B/2 just before *q* arrived.

Because of (+), this implies that also A_1 's budget was at most B/2, so A_1 had already collected at least B/2 queries. So $y \ge B/2$, implying $y \ge x$.

The competitive ratio involving many bidders can be lower than $\frac{3}{4}$, but not much lower.

Worst-Case Scenario

- 1. There are N advertisers $A_1, ..., A_N$
- 2. Each advertiser has budget B = N!
- 3. There are *N* queries $q_1, ..., q_N$
- 4. Advertiser A_i bids on queries $q_1, ..., q_i$
- 5. The query sequence consists of *N* rounds, where the *i*-th round consists of *B* occurrences of *q*_i

Optimum Offline Algorithm

- Assigns all bids of *i*-th round to advertiser A_i
- Yields revenue $N \cdot B$

Balance Algorithm

- Assigns all *B* occurrences of q_1 equally to all A_i , i = 1, ..., N
- Each advertiser gets B/N of queries q_1
- Assigns *B* occurrences of q_2 equally to all A_i , i = 2, ..., n
- Each of $A_2, ..., A_N$ gets B/(N-1) of queries q_2
- ▶ ...

Balance Algorithm

- ▶ ...
- $A_1, ..., A_N$ get B/(N-i+1) of queries q_i
- ▶ ...
- Eventually, budgets of higher-numbered advertisers will be exhausted

Adopted from mmds.org

Balance Algorithm

- ► Eventually, budgets of higher-numbered advertisers will be exhausted
- This happens at lowest round *j* where

$$B(\frac{1}{N} + \frac{1}{N-1} + \dots + \frac{1}{N-j+1}) \ge B$$
⁽²⁾

that is, when

$$\frac{1}{N} + \frac{1}{N-1} + \dots + \frac{1}{N-j+1} \ge 1$$
(3)

Adopted from mmds.org

Balance Algorithm

Euler showed that

$$\sum_{i=1}^k \frac{1}{i} \stackrel{k \to \infty}{\longrightarrow} \log_e k$$

▶ In other words, by approximating (3), we are looking for *j* where

$$\log_e N - \log_e (N - j) = 1$$
 or, equivalently $\frac{N}{N - j} = e$ (4)

Adopted from mmds.org

Balance Algorithm

▶ In other words, by approximating (3), we are looking for *j* where

$$\log_e N - \log_e (N - j) = 1$$
 or, equivalently $\frac{N}{N - j} = e$ (5)

Solving for *j* yields

$$j = N(1 - \frac{1}{e}) \tag{6}$$

Adopted from mmds.org

Balance Algorithm

- Solving for *j* yields $j = N(1 \frac{1}{e})$
- ► So, the approximate revenue of Balance in this worst-case scenario is $BN(1 \frac{1}{e})$
- ► This translates into a competitive ratio of

$$1 - \frac{1}{e} \approx 0.63$$

THE GENERALIZED BALANCE ALGORITHM

Situation

Advertisers' bids are arbitrary and not just 0 or 1

The following generalization of the Balance algorithm can be shown to have a competitive ratio of $1 - \frac{1}{e} \approx 0.63$:

Generalized Balance Algorithm

- ► Query *q* arrives
- Advertiser A_i has bid x_i for query q
- Advertiser A_i has fraction f_i of his budget left unspent

► Let

$$\Psi_i = x_i (1 - e^{-f_i})$$
(7)

Then assign *q* to advertiser A_i such that Ψ_i is maximum.

GENERAL / FURTHER READING

Literature

Mining Massive Datasets, Section 8.4 http:

//infolab.stanford.edu/~ullman/mmds/ch8.pdf

