
  

Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM)
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Note: Gradient is added multiplicatively for every step we 
trace back in our predictions.



  

Exploding/Vanishing Gradients
● Iterative learning process via gradient descent
● Gradient can be unstable since it is the product of 

earlier gradients and tends to grow/shrink 
exponentially (goes for all DNN, but especially RNN 
due to the time component)

● LSTM introduces cell states which provide ways for 
the gradient to flow backwards through time
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sigmoid squashing function
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Note:
In the following slides W, U, 
and b are parameters which 
are learned, xt  is the input 
vector and ht-1 denotes the last
prediction.

gt  = tanh(Wcxt + Ucht-1 + bc)
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ft = σ(Wfxt + Ufht-1 + bf)

gt  = tanh(Wcxt + Ucht-1 + bc)
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ot  = σ(Woxt + Uoht-1 + bo)

ft = σ(Wfxt + Ufht-1 + bf)

gt  = tanh(Wcxt + Ucht-1 + bc)
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gt  = tanh(Wcxt + Ucht-1 + bc)

ft = σ(Wfxt + Ufht-1 + bf)

ot  = σ(Woxt + Uoht-1 + bo)

it = σ(Wixt + Uiht-1 + bi)

ct  = ft * ct-1 + it * gt

ht  = ot * tanh(ct)



  

Gates, memory cell, hidden output
● it = σ(Wixt + Uiht-1 + bi)
● ft = σ(Wfxt + Ufht-1 + bf)
● ot  = σ(Woxt + Uoht-1 + bo)
● gt  = tanh(Wcxt + Ucht-1 + bc)
● ct  = ft * ct-1 + it * gt

● ht  = ot * tanh(ct)

Input Gate

Forget Gate

Output Gate

Squashed Input

Current Cell State

Output



  

Benefits and Drawbacks of LSTM
● Much more resistant to exploding gradients
● Performs well

● High complexity
● Needs relatively large memory
● Takes longer to learn
● Overfitting



  

DeepCare



  

DeepCare Architecture



  

Challenges
● Variable size discrete inputs
● Confounding interactions between disease 

progression and intervention
● Irregular timing
● Overfitting



  

Representing variable-size inputs
● Input sequence ut = [xt, pt, mt, Δt]
● Diagnoses and intervention codes embedded in vectors 

and summarised as 2M-dim admission embedding 
vector [xt, pt] 

● Max pooling admission, normalized sum pooling 
admission and mean pooling admission

● it = (1/mt)σ(Wixt + Uiht-1 + bi)
● Where mt = 1 for unplanned admissions and mt = 2 

otherwise



  

Modeling effect of interventions

● ot  = σ(Woxt + Uoht-1 + Popt + bo)
● ft = σ(Wfxt + Ufht-1 + Pfpt-1 + bf)
● Current interventions should be considered at the 

output gate as it controls illness states and 
interventions reduce illness

● Prior interventions affect which information can be 
forgotten



  

Capturing time irregularity
● Time decay function to reduce effect of memorised 

acute conditions over time
● d(Δt – 1:t) = [log(e + Δt – t:1)]-1

● ft ← d(Δt – 1:t)ft

● More flexible forgetting to deal with chronic or 
worsening conditions

● ft = σ(Wfxt + Ufht-1 + QfqΔt-1:t + Pfpt-1 + bf)



  

DeepCare Forward Pass Algorithm
Inputs: Patients’ disease history records

1) For each step t do:

1)[xt, pt] = embed diagnoses and interventions

2)Compute gates it ,ft ,ot 

3)Compute cell state and hidden state ct ,ht

2) End for

3) Compute h the pooled illness states based on attention scheme

4) Feed to NN and compute P(y | u0:n) to give prediction

5) Compute loss function L (Model learns and changes parameters 
based on error value)



  

Regularization
● Problem of overfitting
● Dropout probabilities introduced to regulate (some 1 – 

pdropout)
● Targets:

– Diagnosis and intervention vectors before pooling
– Each value in [xt,pt] after derivation
– Hidden and input units after weighted pooling
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