Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM)
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Note: Gradient is added multiplicatively for every step we
trace back in our predictions.



Exploding/Vanishing Gradients

* |terative learning process via gradient descent

* Gradient can be unstable since it is the product of
earlier gradients and tends to grow/shrink
exponentially (goes for all DNN, but especially RNN
due to the time component)

 LSTM introduces cell states which provide ways for
the gradient to flow backwards through time
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In the following slides W, U, ¥
and b are parameters which
are learned, x; is the input N
vector and h.: denotes the last . _
prediction.
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Gates, memory cell, hidden output

It = o(Wx: + Uhes + b)) Input Gate
fi = a(Wex: + Uhes + by) Forget Gate
0 = o(WoX: + Uohe.s + bo) Output Gate
g: = tanh(Wex: + Uches + be) Squashed Input
Ct =h*Cra+1t* g Current Cell State
h: = o:* tanh(cy) Output



Benefits and Drawbacks of LSTM

Much more resistant to exploding gradients
Performs well

High complexity

Needs relatively large memory
Takes longer to learn
Overfitting



DeepCare



DeepCare Architecture

Neural network
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Cnncatenatinn

- Weighted pooling Weighted pooling =~ Weighted pooling




Challenges

Variable size discrete inputs

Confounding interactions between disease
progression and intervention

Irregular timing
Overfitting



Representing variable-size inputs

Input sequence u: = [X;, pi;, M., Af]

Diagnoses and intervention codes embedded in vectors
and summarised as 2M-dim admission embedding
vector [X;, p{

Max pooling admission, normalized sum pooling
admission and mean pooling admission

= (l/mt)O'(VV,Xt + Uihes + bl)

Where m:= 1 for unplanned admissions and m;= 2
otherwise



Modeling effect of interventions

O: = J(Woxt + Uohs + Popt + bo)
fi = a(Wex: + Uhe: + Pipr1 + by)

Current interventions should be considered at the
output gate as it controls iliness states and
Interventions reduce illness

Prior interventions affect which information can be
forgotten



Capturing time irregularity

Time decay function to reduce effect of memorised
acute conditions over time

d(A:-1) = [log(e + Ai-c1)]*
fo — d(Ai- 1y

More flexible forgetting to deal with chronic or
worsening conditions

fi = a(Wex: + Uhes + OQar-11 + Pipr1 + Dy)



DeepCare Forward Pass Algorithm

Inputs: Patients’ disease history records
1) For each step t do:
D)[x:; p:] = embed diagnoses and interventions
2)Compute gates i, f;,0:
3)Compute cell state and hidden state c:,h:
2) End for
3) Compute h the pooled illness states based on attention scheme
4) Feed to NN and compute P(y | uo.n) to give prediction

5) Compute loss function L (Model learns and changes parameters
based on error value)



Regularization

* Problem of overfitting

* Dropout probabilities introduced to regulate (some 1 —
pdropoul)

* Targets:
— Diagnosis and intervention vectors before pooling
- Each value in [x;,p:] after derivation
- Hidden and input units after weighted pooling
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