

Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM)

Prediction

Input vector

RNN

Possible outcomes

Note: Gradient is added multiplicatively for every step we
trace back in our predictions.

Exploding/Vanishing Gradients
● Iterative learning process via gradient descent
● Gradient can be unstable since it is the product of

earlier gradients and tends to grow/shrink
exponentially (goes for all DNN, but especially RNN
due to the time component)

● LSTM introduces cell states which provide ways for
the gradient to flow backwards through time

tanh squashing function

1.0

.5

-1.0

-.5

1.0.5 1.5 2.0

-1.0 -.5-1.5-2.0

Denoted by

sigmoid squashing function

1.0

.5

1.0 2.0-1.0-2.0

Denoted by

Prediction

Input vector

RNN

Note:
In the following slides W, U,
and b are parameters which
are learned, xt is the input
vector and ht-1 denotes the last
prediction.

gt = tanh(Wcxt + Ucht-1 + bc)

Prediction +
Memories

Memory

Forget Gate

Input vector

Memory

Prediction

ft = σ(Wfxt + Ufht-1 + bf)

gt = tanh(Wcxt + Ucht-1 + bc)

Prediction

Collected
possibilities

Memory

Possibilities

Output Gate

Forget Gate

Input Vector

Memory

ot = σ(Woxt + Uoht-1 + bo)

ft = σ(Wfxt + Ufht-1 + bf)

gt = tanh(Wcxt + Ucht-1 + bc)

Prediction

Collected
possibilities

Filtered
possibilities

Memory

Possibilities

Output Gate

Forget Gate

Input gate

Input Vector

LSTM

gt = tanh(Wcxt + Ucht-1 + bc)

ft = σ(Wfxt + Ufht-1 + bf)

ot = σ(Woxt + Uoht-1 + bo)

it = σ(Wixt + Uiht-1 + bi)

ct = ft * ct-1 + it * gt

ht = ot * tanh(ct)

Gates, memory cell, hidden output
● it = σ(Wixt + Uiht-1 + bi)
● ft = σ(Wfxt + Ufht-1 + bf)
● ot = σ(Woxt + Uoht-1 + bo)
● gt = tanh(Wcxt + Ucht-1 + bc)
● ct = ft * ct-1 + it * gt

● ht = ot * tanh(ct)

Input Gate

Forget Gate

Output Gate

Squashed Input

Current Cell State

Output

Benefits and Drawbacks of LSTM
● Much more resistant to exploding gradients
● Performs well

● High complexity
● Needs relatively large memory
● Takes longer to learn
● Overfitting

DeepCare

DeepCare Architecture

Challenges
● Variable size discrete inputs
● Confounding interactions between disease

progression and intervention
● Irregular timing
● Overfitting

Representing variable-size inputs
● Input sequence ut = [xt, pt, mt, Δt]
● Diagnoses and intervention codes embedded in vectors

and summarised as 2M-dim admission embedding
vector [xt, pt]

● Max pooling admission, normalized sum pooling
admission and mean pooling admission

● it = (1/mt)σ(Wixt + Uiht-1 + bi)
● Where mt = 1 for unplanned admissions and mt = 2

otherwise

Modeling effect of interventions

● ot = σ(Woxt + Uoht-1 + Popt + bo)
● ft = σ(Wfxt + Ufht-1 + Pfpt-1 + bf)
● Current interventions should be considered at the

output gate as it controls illness states and
interventions reduce illness

● Prior interventions affect which information can be
forgotten

Capturing time irregularity
● Time decay function to reduce effect of memorised

acute conditions over time
● d(Δt – 1:t) = [log(e + Δt – t:1)]-1

● ft ← d(Δt – 1:t)ft

● More flexible forgetting to deal with chronic or
worsening conditions

● ft = σ(Wfxt + Ufht-1 + QfqΔt-1:t + Pfpt-1 + bf)

DeepCare Forward Pass Algorithm
Inputs: Patients’ disease history records

1) For each step t do:

1)[xt, pt] = embed diagnoses and interventions

2)Compute gates it ,ft ,ot

3)Compute cell state and hidden state ct ,ht

2) End for

3) Compute h the pooled illness states based on attention scheme

4) Feed to NN and compute P(y | u0:n) to give prediction

5) Compute loss function L (Model learns and changes parameters
based on error value)

Regularization
● Problem of overfitting
● Dropout probabilities introduced to regulate (some 1 –

pdropout)
● Targets:

– Diagnosis and intervention vectors before pooling
– Each value in [xt,pt] after derivation
– Hidden and input units after weighted pooling

References:

● S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

● R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” arXiv preprint
arXiv:1211.5063, 2012.

● Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,”
Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

● Brandon Rohrer, Recurrent Neural Networks (RNN) and Long, Short-Term Memory (LSTM),
https://www.youtube.com/watch?v=WCUNPb-5EYI, Jun. 2017

● Recurrent neural network. (2021, July 29) In Wikipedia.
https://en.wikipedia.org/wiki/Recurrent_neural_network

● Long short-term memory. (2021, July 27) In Wikipedia.
https://en.wikipedia.org/wiki/Long_short-term_memory

https://en.wikipedia.org/wiki/Recurrent_neural_network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Hyperbolic tangent (tanh) squashing function
	Logistic (sigmoid) squashing function
	recurrent neural network_clipboard0
	memory_clipboard0
	memory_clipboard1
	long short-term memory_clipboard0
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

