Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM)



RNN 1
Prediction
//
/
!
A/
|
o\
\\\\ . {
~ .\
./
o
.4
Input vector @- ® Possible outcomes




X

Note: Gradient is added multiplicatively for every step we
trace back in our predictions.



Exploding/Vanishing Gradients

* |terative learning process via gradient descent

* Gradient can be unstable since it is the product of
earlier gradients and tends to grow/shrink
exponentially (goes for all DNN, but especially RNN
due to the time component)

 LSTM introduces cell states which provide ways for
the gradient to flow backwards through time



tanh squashing function penoted by ()




sigmoid squashing function

1.0]

Denoted by @



R N N ______________________________________ «—— Prediction

Note: ,
In the following slides W, U, ¥
and b are parameters which
are learned, x; is the input N
vector and h.: denotes the last . _
prediction.

Input vector

2 ()
Ugt = tanh(Wex: + Uche.: + be)




<« | Prediction +
Memories

P

Memory

»>

> Forget Gateé
g: Qf < Memory N
fi = o(Wix: + Uthes + by)

Prediction

Input vector
3 ()
\"_Jg: = tanh(Wax; + Uches + be)




Memory

Input Vector

P

) 4

Output Gate

o8 ()
O = U(WoXt + Uohes + bo)
S

A

N

Forget Gateé
g: Qf O Memory
fi = o(Wix: + Uthes + by)

3 ()
\"_Jg: = tanh(Wax; + Uches + be)

Prediction

< | Colle_ct_e_q
possibilities

Possibilities



A
LSTM e <« | Prediction
Output Gate
/// B: @ = h; = o.* tanh(c,)
/I/ Ot = U(Woxt + Uohes + bo)
v S
'\\ 7y
\ - | Colle_ct_e_q
% possibilities
Forget Gate y :
ke S
Memory yy
fi = o(Wix: + Uthes + by) :
Filtered
possibilities
Input gate

W
D

) 4

It = o(Wix: + Uhe1 + b))

Input Vector Possibilities

o2 ()
\"_Jg: = tanh(Wox; + Uches + be)




Gates, memory cell, hidden output

It = o(Wx: + Uhes + b)) Input Gate
fi = a(Wex: + Uhes + by) Forget Gate
0 = o(WoX: + Uohe.s + bo) Output Gate
g: = tanh(Wex: + Uches + be) Squashed Input
Ct =h*Cra+1t* g Current Cell State
h: = o:* tanh(cy) Output



Benefits and Drawbacks of LSTM

Much more resistant to exploding gradients
Performs well

High complexity

Needs relatively large memory
Takes longer to learn
Overfitting



DeepCare



DeepCare Architecture

Neural network

h

Cnncatenatinn

- Weighted pooling Weighted pooling =~ Weighted pooling




Challenges

Variable size discrete inputs

Confounding interactions between disease
progression and intervention

Irregular timing
Overfitting



Representing variable-size inputs

Input sequence u: = [X;, pi;, M., Af]

Diagnoses and intervention codes embedded in vectors
and summarised as 2M-dim admission embedding
vector [X;, p{

Max pooling admission, normalized sum pooling
admission and mean pooling admission

= (l/mt)O'(VV,Xt + Uihes + bl)

Where m:= 1 for unplanned admissions and m;= 2
otherwise



Modeling effect of interventions

O: = J(Woxt + Uohs + Popt + bo)
fi = a(Wex: + Uhe: + Pipr1 + by)

Current interventions should be considered at the
output gate as it controls iliness states and
Interventions reduce illness

Prior interventions affect which information can be
forgotten



Capturing time irregularity

Time decay function to reduce effect of memorised
acute conditions over time

d(A:-1) = [log(e + Ai-c1)]*
fo — d(Ai- 1y

More flexible forgetting to deal with chronic or
worsening conditions

fi = a(Wex: + Uhes + OQar-11 + Pipr1 + Dy)



DeepCare Forward Pass Algorithm

Inputs: Patients’ disease history records
1) For each step t do:
D)[x:; p:] = embed diagnoses and interventions
2)Compute gates i, f;,0:
3)Compute cell state and hidden state c:,h:
2) End for
3) Compute h the pooled illness states based on attention scheme
4) Feed to NN and compute P(y | uo.n) to give prediction

5) Compute loss function L (Model learns and changes parameters
based on error value)



Regularization

* Problem of overfitting

* Dropout probabilities introduced to regulate (some 1 —
pdropoul)

* Targets:
— Diagnosis and intervention vectors before pooling
- Each value in [x;,p:] after derivation
- Hidden and input units after weighted pooling



References:

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735-
1780, 1997.

« R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” arXiv preprint
arXiv:1211.5063, 2012.

* Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,”
Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157-166, 1994.

« Brandon Rohrer, Recurrent Neural Networks (RNN) and Long, Short-Term Memory (LSTM),
https://www.youtube.com/watch?v=WCUNPb-5EYI, Jun. 2017

* Recurrent neural network. (2021, July 29) In Wikipedia.
https://en.wikipedia.org/wiki/Recurrent_neural_network

* Long short-term memory. (2021, July 27) In Wikipedia.
https://en.wikipedia.org/wiki/Long_short-term_memory


https://en.wikipedia.org/wiki/Recurrent_neural_network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Hyperbolic tangent (tanh) squashing function
	Logistic (sigmoid) squashing function
	recurrent neural network_clipboard0
	memory_clipboard0
	memory_clipboard1
	long short-term memory_clipboard0
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

