Blockchain Technology in Healthcare

Table of contents

- Bitcoin blockchain
- Digression: Hashing
- Block creation using proof-of-work
- Medical data
- Blockchain for medical health records
- Challenges and solutions
- Discussion
- Literature

Motivation of the Bitcoin blockchain

- Bitcoin has no central intermediary → Motivation: How can we solve the peer-topeer double-spending problem?
 - How can we prevent electronic coins such as bitcoins from being spent twice without having a central intermediary (e.g. bank)

Figure 1: Double-spending problem [1]

Why is a central intermediary not good enough?

Centralized vs decentralized networks

- A central intermediary creates a single point of failure
- If central intermediary is down
 → entire network stops working
- If central intermediary is intruded upon
 - → whole network faces the risk of being invaded

Figure 2: Centralized vs decentralized networks [1]

A decentralized network is preferred

Even better: Blockchain

Some characteritics of blockchain:

- Every node maintains a copy of the whole blockchain
 - → every node can verify every transaction (distributed verification)
- Distributed timestamping mechanism allow to determine, which transactions should be accepted or rejected
- A blockchain is:
 - Decentralized
 - Distributed
 - Immutable (why?)
 - Transparent

Digression: Hashing

Definition: A hash function is any function that can be used to map data of arbitrary size to fixed-size values. The values returned by a hash function are called hash values or hash

• A hash function should be very fast to compute and should minimize collisions

Simplified blockchain example

Figure 5: Exemplary blockchain [1]

- Each block in the Bitcon blockchain contains (amongst other things):
 - Transactions
 - The Hash of the previous block (here 256 bits)
 - \rightarrow If a transaction in block B1 is changed, its hash value changes
 - \rightarrow Fraud attempts are detected easily
 - \rightarrow Blockchain is (close to) immutable
- Order of blocks is deterministic (because they are chained)
 - \rightarrow Each block serves as a timestamp of the enclosed transactions
 - \rightarrow Prevents double spending (transactions are timestamped)

Creation of a new block: Proof-of work

Figure 6: Creation of a new block [1]

- Nonce = only input of hashing function, that can be changed
- Nonce is incremented in steps of 1 bit, until the hashed value (here: 256 bits) contains a prefedined number of leading zero bits (**Proof** of the work)
- First node that successfully completes the proof-of-work, may create a new block: Verify the transactions and add the block to the longest chain
- The new block is broadcasted to the whole network and verified by each node Source: [1]

Creation of a new block: Proof-of work

Figure 6: Creation of a new block [1]

The block creation process (mining) is difficult (computationally expensive), but checking is easy

Adding new blocks: Mining

- New blocks are added to the longest chain
- Example: Malicious blocks compete with an honest block
- If computational power of honest nodes is larger than that of malicious nodes
 - → An honest block H3 is created right after H2, before attackers can create new malicious blocks after M1 or M2
 - → Because the mining process is computationally expensive and honest nodes have more computational power, the probability of a successful attack is very small

		"Honest" Block H2 Hash of H1's Header Nonce Transaction Transaction	Not-"Longest" branch chains		
	"Honest" Block H ₁	"Malicious" Block M ₁			
	\rightarrow Hash of H_0 's Header Nonce	Hash of H_1 's Header Nonce			
	Transaction Transaction	Transaction Transaction			
		"Malicious" Block M ₂	"Malicious" Block M ₃	"New" Block N	
		Hash of H ₁ 's Header Nonce	Hash of M ₂ 's Header Nonce	Hash of M_3 's Header Nonce	
		Transaction Transaction	Transaction Transaction	Transaction Transaction	
	"Longest" branch chain				
1					

Figure 8: Example of a 51% attack [1]

- Here: Computational power of honest nodes is smaller
 → Malicious block M3 is created after M2
- New block will be added to the longest chain, after M3
 → Attacker has succesfully modified the blockchain

Some additional information

Alternatives to proof-of-work:

- Proof-of-stake: The node with the oldest coins can create a new block
- Proof-of-burn: the node willing to "burn" or destroy the largest number of coins, by sending it to a "NULL" address, can create a new block

Outlook:

- Blockchain is now regarded as a new form of a distributed ledger/database
 - Arbitrary data can be stored in the metadata of transactions

Potential use in healthcare

Application in Healthcare

Figure 9: Applications of blockchain in halthcare [8]

Sensitive medical data

- In healthcare, huge amounts of data are generated (diagnosis, treatment), accessed (patient records) and disseminated to other medical authorities
- Patients data is very sensitive
- **BUT:** Data-sharing is important for
 - Diagnosis (ask another expert or transfer to another medical authority)
 - Combined clinical decision making (medical tests e.g. blood tests)
 - Tele-medicine: Data is transferred to a specialist for an expert opinion sometimes in real time (remote cases or fragile patients)
 → Patients are remotely diagnosed

Challenge: We need a safe, secure and scalable way to share sensitive data

Store patient data on a blockchain

Store the medical records of patients directly on a blockchain:

- Patient manage their own healthcare records: Patients owns and controls the access to their own data
 - \rightarrow Prevents scattering of data
 - → Patients can easily transfer the data to another helthcare provider or get a complete copy of their records

Other advantages:

- Blockchain is *decentalized* \rightarrow no single point of failure
- Security/Privacy: Data is encrypted and can only be decrypted with the patient's private key (Remember: Every node maintains a full record of the blockchain)
- Data provenance: Records are signed by the source
 → Legitimacy of records can be verified
- Immutability of medical records (except for 51% attack)

Challenges

Challenges:

• No central intermediary to recoup the private key

What happens, if the patient loses its private key?

• Users are "anonymous" by using hash values as addresses. User may still be identified through inspection and analysis of the publicly available transaction information on the blockchain network

Only pseudoanonimity on a blockchain network

- What happens in the case of an emergency?
 - \rightarrow No trusted third party to authorize data access \rightarrow patient has to select one/multiple representatives that can access the data on their behalf

Challenges

Challenges:

- Threat of 51% attack
 - Threat can be drastically reduced, if the network is private (contrary to Bitcoin). Private means, that not everybody is allowed to join the network
- Speed and scalability:
 - The transaction time of blockchain can be long, depending on the protocol (e.g. Bitcoin, 288.000 transactions per day vs 150 million per day for Visa)
 - Remember: Every node maintains a full record of the blockchain

Solutions

- Speed and scalability: Storing sensitive data off-blockchain and only disseminating "pointers" (eg, encrypted links) or permission information to the off-chain stored data on the blockchain
 - Of-chain storage has to be done on a decentralized network, otherwise there is a single point of failure
- New blockchain implementations provide higher transaction speed

Where do you see the most potential?

Figure 9: Applications of blockchain in halthcare [8]

Literature

[1] T. Kuo, H. Kim and L. Ohno-Machado, (2017): Blockchain distributed ledger technologies for biomedical and health care applications

[2] Netcera, (visited 10.06.2021). https://blog.netcetera.com/blockchain-everything-you-need-to-know-about-the-revolutionary-technology-7579f82b05d.

[3] Asiablockchainreview, (visited 10.06.2021). https://www.asiablockchainreview.com/the-revolution-of-blockchain-in-healthcare-industry

[4] A. Schönhuth (SoSe 2021), 392157 Big Data Analytics (V)

[5] Wikipedia (visited 12.06.2021): https://en.wikipedia.org/wiki/Hash_function

[6] Networkencyclopedia (visited 12.06.2021): https://networkencyclopedia.com/hashing-algorithm/

[7] BigchainDB GmbH, (visited 14.06.2021). BigchainDB The scalable blockchain database. https://www.bigchaindb.com/

[8] A. A. Siyal et al., (2019). Applications of Blockchain Technology in Medicine and Healthcare: Challenges and Future Perspectives