
### IoT in healthcare

Presentations for the Bielefeld University course »Modern Data Science Technologies in Healthcare«



- 2 Kyuri Kim: "IoT Data and Data Processing in Healthcare"
- Bebeta Hoxha: "Data Security and Privacy in IoT"







#### **Contents**

- 1) Cloud IoT Integration For Healthcare Systems
- 2) IoT in Healthcare Architecture Framework
- 3) Cloud Computing
- 4) Cloud-based Healthcare System in IoT Application
- 5) Fog Computing

### **Cloud IoT integration for healthcare systems**

# IoT Applications in healthcare - generate high volume of data - have constrained storage space

- suffers from constrained power, limited bandwidth

Data to mainframe computers

- Time consuming
- Not economical
- Possibility of entire system down

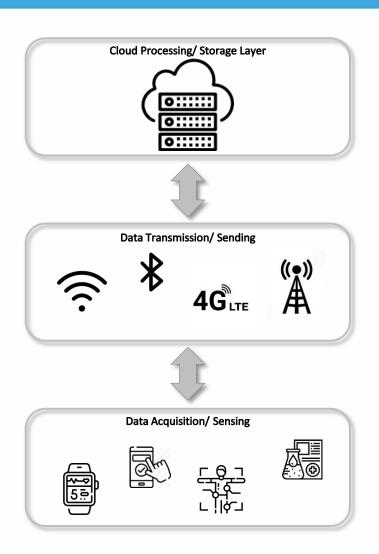
Distributed computing

- Cost for node replacement
- Backup power cost

Cloud IoT integration



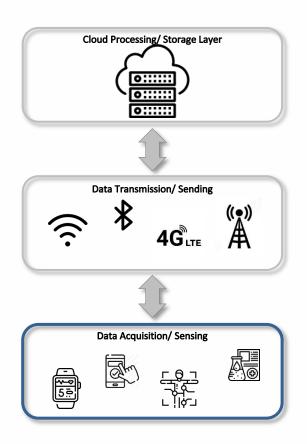
### **Cloud IoT integration for healthcare systems**


- Cloud offers robust, flexible, and agile platform for IoT healthcare application.
- Cloud IoT implementation includes
  - virtually unlimited storage space,
  - computational power for IoT nodes,
  - cross platform support for applications,
  - efficient resource management.
- With Cloud IoT platform, the users are enable to use virtual resources dispensed like a service on subscription or "pay-per-use" basis.



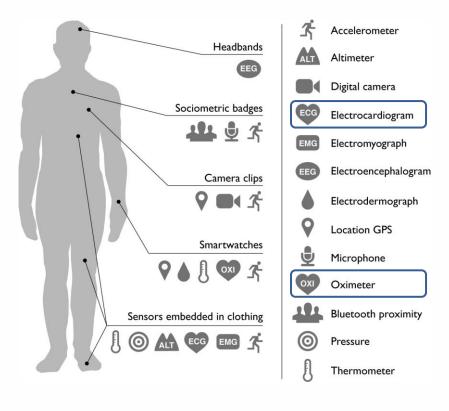
# **Cloud IoT integration for healthcare systems**

- With Cloud IoT architecture, Cloud layer connects underlying IoT sensor objects and end user services at the access layer.
- The main features of the integration of Cloud IoT framework for healthcare are:


| Storage                                                                        | Computing capabilities                                                                   | Communication                                                 |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| (IoT)A Large Volume of Data                 (Cloud)Virtually Unlimited Storage | (IoT)limited Processing Capacity              (Cloud)Virtually Infinite Processing Power | (IoT) permission to data sharing, Communication among sensors |

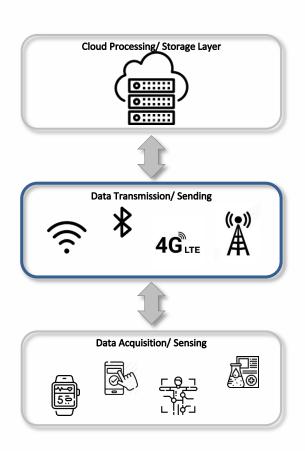


3 layers architecture carrying varied functions with


- 1) Data Acquisition or Sensing
- 2) Data Transmission or Sending
- 3) Cloud Processing or Storage

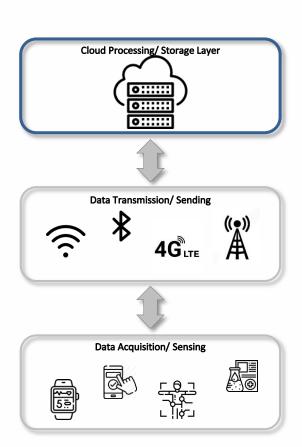
- Data Acquisition/Sensing Layer




- Collect and record health data of patients
- Recorded parameters vary across applications
- Most of applications with accelerometers and gyroscopic sensors
- To design the sensing layer,
  - The cost and size of setting up the network
  - Energy utilization in sensing
  - Data transmission capabilities of the sensors.

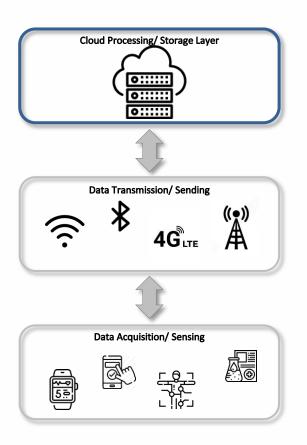
- Data Acquisition/Sensing Layer






- Data Transmission/Sending layer




- This layer provides the interface to communicate and share the data.
- The sending layer is responsible for transferring patient data securely to a remote data center
- The data transmission involves local and global communication
- For monitoring and scanning environment,
   wireless data transmission standards are
   employed

- Cloud Processing/Storing layer

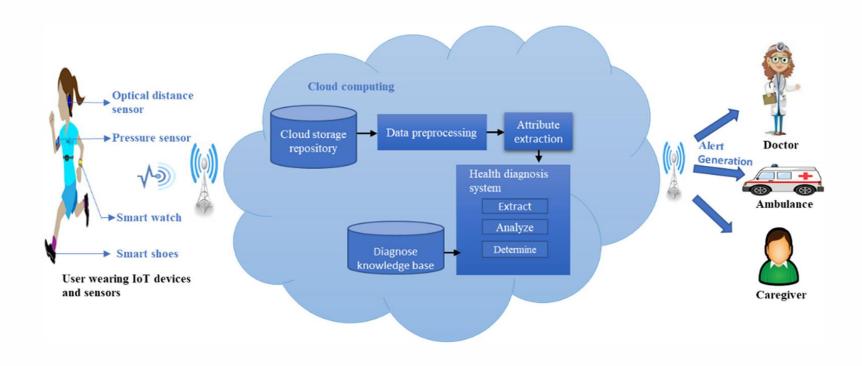


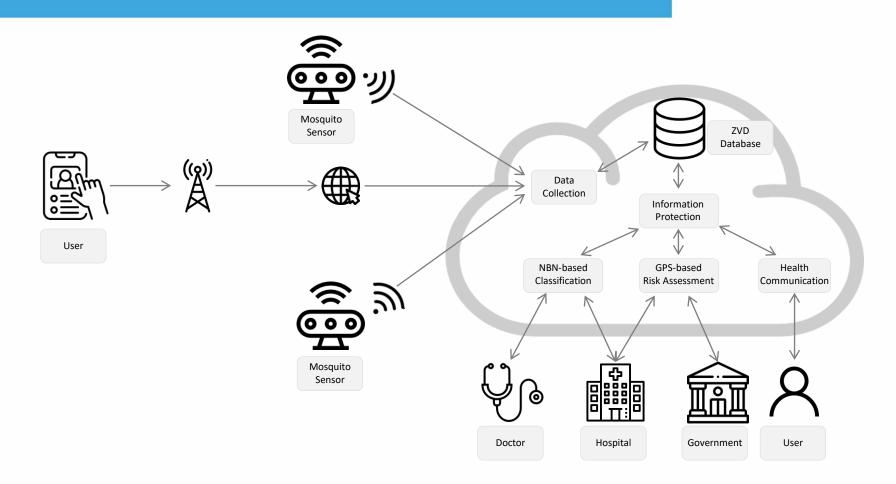
- The Cloud IoT systems interconnect diverse objects that generate large volumes of data.
- The healthcare data aggregated from the sensing layer is used for further analysis.
- Cloud provides an efficient platform for archiving a patient's medical data for long-term storage.
- It is providing assistance to medical professionals for better diagnosis.
- Cloud provides data analytics that use sensor data for better diagnosis and prediction of diseases.

Cloud Processing/Storing layer



- Cloud also offers data visualization that presents a large amount of data from sensors for physicians.
- The complexity to manage and maintain healthcare data has been eased with the cloud technology.





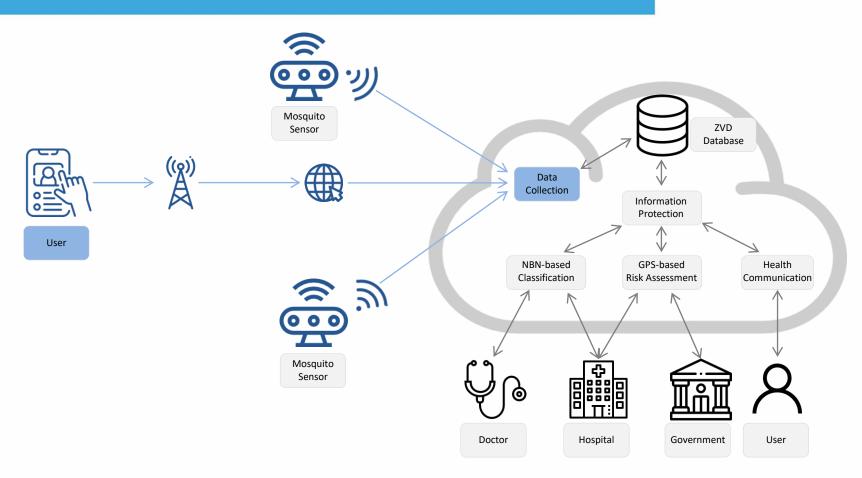



# **Cloud computing**





 The cloud-based system is to prevent and control the spread of Zika virus disease using integration of mobile phones and IoT.


→ www.uni-bielefeld.de



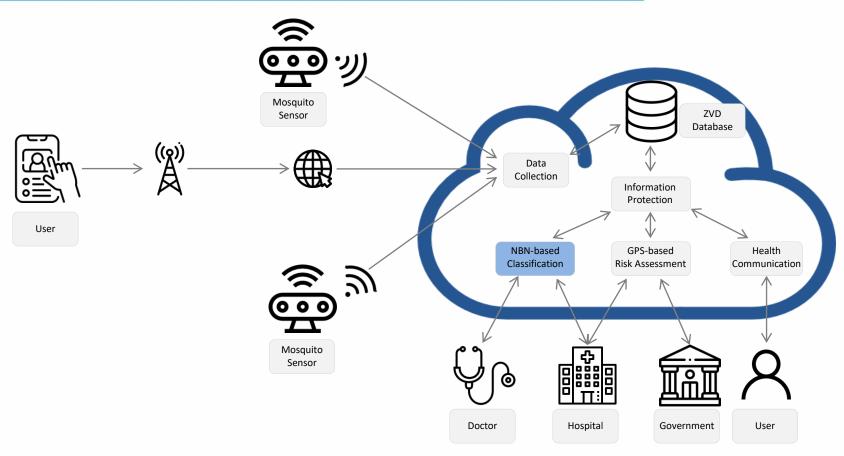
- Data Collection
- NBN-Based Classification
- GPS-Based Risk Assessment
- Health Communication Component
- Operating Assumptions
- Performance Analysis



- Data Collection



• Personal information and information about Zika virus disease symptoms of users are collected.


Data Collection

| S.No                               | Attributes                    | Description                               |  |
|------------------------------------|-------------------------------|-------------------------------------------|--|
| (a) Personal attributes            |                               |                                           |  |
| 1.                                 | RNO                           | Reference number of a user                |  |
| 2.                                 | Name                          | Name of user                              |  |
| 3.                                 | Age                           | Age of user (in years)                    |  |
| 4.                                 | Gender                        | Male or female (M/F)                      |  |
| 5.                                 | Residential address           | Permanent address of user                 |  |
| 6.                                 | Office address                | Office address of user (if any)           |  |
| 7.                                 | Mobile number                 | Mobile number of a user                   |  |
| 8.                                 | FMN                           | Mobile number of a family member          |  |
| S.No                               | Attributes                    | Response                                  |  |
| (b) Health related attributes      |                               | ·                                         |  |
| 1.                                 | Fever                         | (Y/N)                                     |  |
| 2.                                 | Skin rashes                   | (Ý/N)                                     |  |
| 3.                                 | Conjunctivitis                | (Ý/N)                                     |  |
| 4.                                 | Joint pain                    | (Ý/N)                                     |  |
| 5.                                 | Muscle pain                   | (Ý/N)                                     |  |
| 6.                                 | Headache                      | (Y/N)                                     |  |
| 7.                                 | Exposure to risk area         | (Y/N)                                     |  |
| S.No                               | Attribute                     | Description                               |  |
| (c) Environment related attributes |                               | •                                         |  |
| 1.                                 | Mosquito-dense site location  | GPS location of mosquito-dense site       |  |
| 2.                                 | Mosquito density              | Number of mosquitoes counted by sensor    |  |
| 3.                                 | Breeding site location        | GPS location of breeding site             |  |
| 4.                                 | Temperature                   | Temperature around standing water         |  |
| 5.                                 | Humidity                      | Humidity                                  |  |
| 6.                                 | Carbon dioxide ( <i>Co</i> 2) | Value of carbon dioxide                   |  |
| 7.                                 | Site image                    | Images of mosquito-dense or breeding site |  |

- The table shows
  - The attributes of **personal information**
  - Zika Virus disease symptoms,
  - The environmental attributes of
- mosquito-dense sites and breeding sites is transmitted to the cloud and stored in the database for further processing.



- NBN-Based Classification



Based on the user symptoms-response for the health attributes,
 the user is classified into infected or uninfected using a Naïve Bayesian Network algorithm

- NBN-Based Classification
  - NBN classifier a powerful probabilistic model for solving classification problems
  - Let C be a class variable representing two categories Uninfected (U) and Infected (I) based on a vector of symptoms Si = (F, SR, C, JP, MP, H, ERA)
  - To classify a user  $xi \in X$ , i = 1,2,...,n into infected (I) or uninfected (U) using symptoms Si, the probability of each class is computed using the Bayes' rule as given below:

$$P(C = U|S_i) = \frac{P(U)P(S_i|U)}{P(S_i)}$$
  
$$P(C = I|S_i) = \frac{P(I)P(S_i|I)}{P(S_i)}$$

- P(C = U|Si) represents the probability of any user as uninfected (U) based on symptom Si
- P(C = I|Si) is the probability of any user as infected (I) with ZikaV based on symptom Si
- P(U), and P(I) are the probability of having ZikaV infection and P(Si) is the probability of having a symptom Si
- The class with a higher probability will be the category of the user

NBN-Based Classification

#### Algorithm 1: Evaluate the Category of the Patient Using NBN

**Input** ZVD symptoms parameters and RN of a user.

Output Revised category of a user based on symptoms.

Read the symptoms data and RN of the user;

if RN is already present then

Update the database with newly entered data;

#### else

Create a new record with RN of the patient and store the primary symptoms;

#### end if

Apply the Matlab algorithm NaiveBayes.fit(training, class) with appropriate parameters:

- (a) Type of distribution such as Gaussian, Kernel, etc.
- (b) The prior probabilities for the classes such as empirical, uniform, vector, and structure.
- (c) The bandwidth of the kernel smoothing window.
- (d) The regions where the density can be applied.

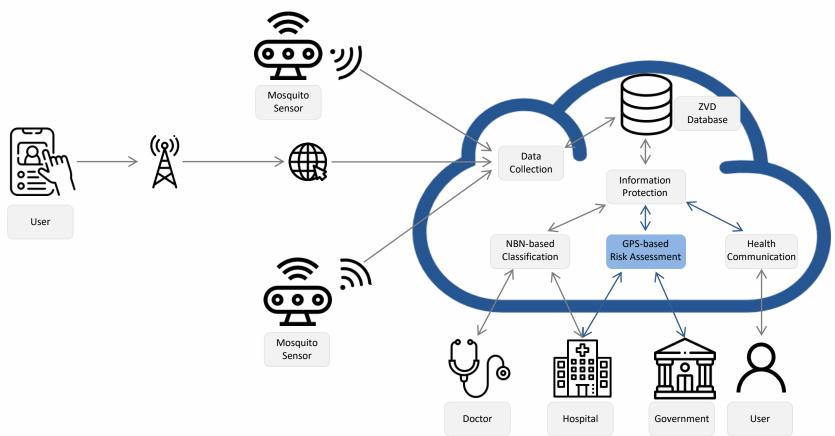
if revised category = old category then

Save the results and update the database record;

#### else

Save the classification results in the database;

Update the category of the patient;


Send an alert message to user, doctor, and nearby hospital;

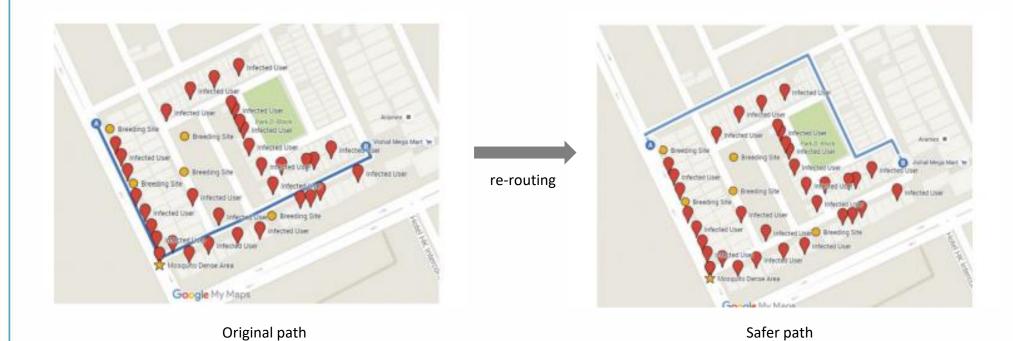
end if

- This Algorithm for the category of the user using NBN classification algorithm in Matlab.
- In this algorithm, the vital symptoms entered by the users from their respective mobile phones are used along with their reference numbers.



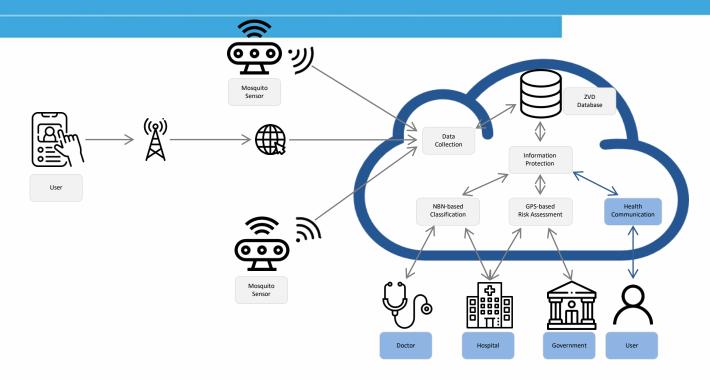
GPS-Based Risk Assessment




 The geographic location of infected users, breeding sites and mosquito dense areas can be used to identify and separate the risk-prone areas



GPS-Based Risk Assessment


- The geographic location of infected users, breeding sites and mosquito dense areas can be used to identify and separate the risk-prone areas
- Continuously data is capturing from users as well as mosquito sensors so that any newly infected user or risk site is **automatically identified**.
- Google Maps Web service is used to **visualize** the spread of infection, high mosquito-dense sites, and breeding sites using their GPS locations.
- The locations of new infected users and sites are automatically detected by the system and the Google map is updated accordingly.
- The user has diverted to the safer path by using an appropriate re-routing.

- GPS-Based Risk Assessment

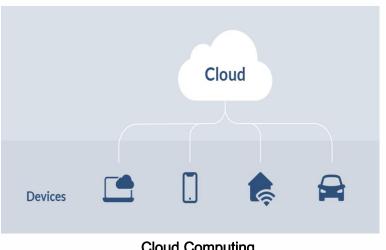




Health Communication



- System generated alert messages related to
- (a) preventing the growth of mosquitoes, and
- (b) preventing the bites of mosquitoes are sent to the infected or uninfected users through SMS or e-mail to improve the user's health
- Alert messages are also sent to nearby hospitals or healthcare agencies depending upon the GPS location of the patient's mobile phone.




Performance Analysis

|               | TP rate        | FP rate        | Precision      | Recall         | F-Measure      | ROC area       | Category |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|
|               | 0.926          | 0.027          | 0.899          | 0.802          | 0.895          | 0.972          | 1        |
| Weighted Avg  | 0.856<br>0.891 | 0.076<br>0.052 | 0.886<br>0.892 | 0.833<br>0.817 | 0.808<br>0.851 | 0.983<br>0.977 | U        |
| weigilieu Avg | 0.071          | 0.032          | 0.072          | 0.017          | 0.031          | 0.777          |          |

- In the research, the performance is evaluated by creating Bayesian Network using the data of 50,000 users in R.
- The Naive Bayesian algorithm produces high TP rate of 0.891 and low FP rate of 0.052.
- And higher values of precision and recall, which are 0.892 and 0.817, respectively.

### **Fog Computing**



Cloud

**Cloud Computing** 

**Fog Computing** 

- Fog is the extension of cloud computing that consists of multiple edge nodes directly connected to physical devices.
- To meet the growing demand for IoT solutions, fog computing comes into action on par with cloud computing.



# **Fog Computing**

- Cloud vs. fog concepts are very similar to each other
- But still, there is a difference between cloud and fog computing on some parameters

|                            | Cloud                              | Fog                               |
|----------------------------|------------------------------------|-----------------------------------|
| Architecture               | Centralized                        | Distributed                       |
| Communication with devices | From a distance                    | Directly from the edge            |
| Data Processing            | Far from the source of information | Clos to the source of information |
| Computing Capabilities     | Higher                             | Lower                             |
| Number of Nodes            | Few                                | Very large                        |
| Analysis                   | Long-term                          | Short-term                        |
| Latency                    | High                               | Low                               |
| Connectivity               | Internet                           | Various Protocols and Standards   |
| Security                   | Lower                              | Higher                            |

#### **Sources**

[1]Shah, Junaid & Bhat, Heena & Khan, Asif. (2020). Integration of Cloud and IoT for smart e-healthcare. 10.1016/B978-0-12-819664-9.00006-5.

[2] Jagadeeswari, V., Subramaniyaswamy, V., Logesh, R. et al. A study on medical Internet of Things and Big Data in personalized healthcare system. *Health Inf Sci Syst* 6, 14 (2018). https://doi.org/10.1007/s13755-018-0049-x

[3]Sareen S, Sood SK, Gupta SK. SECURE INTERNET OF THINGS-BASED CLOUD FRAMEWORK TO CONTROL ZIKA VIRUS OUTBREAK. Int J Technol Assess Health Care. 2017 Jan;33(1):11-18. doi: 10.1017/S0266462317000113. Epub 2017 Apr 24. PMID: 28434408.

[4] Santos, G., Takako Endo, P., Ferreira da Silva Lisboa Tigre, M. et al. Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures. J Cloud Comp 7, 16 (2018). https://doi.org/10.1186/s13677-018-0118-3