Discovery of Structural Variants: Introduction

Alexander Schönhuth

Bielefeld University April 28, 2021

Organization

ORGANIZATION

- Organization and introduction: *today*
- ► Full literature list available: *by April 30*
- ► How to present (brief): *May 5*
- ► How to write (brief): *May* 12
- ▶ **Presentations:** from May 19:
 - ► Each presentation 30-45 minutes
 - We can do two presentations per week, if this suits best
- **Technical Report:** *after presentation:*
 - ► Each report 8-15 pages
 - Optimally, report profits from feedback provided after presentation
 - Drafts can be submitted for discussion
 - Improving drafts based on feedback

Genetic Variants

GENETIC VARIANTS

Until 2006

Single nucleotide polymorphisms (SNPs)

GENETIC VARIANTS

Until 2006

Single nucleotide polymorphisms (SNPs)

CCCAGCACTTTGGGAGG CAAGGTGGGGGGGGGGGGGGAGGAATTGCTTAAGCCCAGGAGT Reference CCCAGCACTTTGGGAGG CAAGGTGGGGGGGGGGGGGGAGGAATTGGCTTAAGCCCAGGAGT New Genome

From 2006

Structural Variants

Further variations: inversions, duplications, ...

Somatic Variants

SOMATIC VARIANTS

 $CANCER \leftrightarrow CONTROL$

Single Nucleotide Polymorphisms (SNPs)

CAGCATTGAAATA A GGCACAT C CGAA Cancer Genome

CAGCATTGAAATA T GGCACAT C CGAA

Control Genome

CAGCATTGAAATA T GGCACAT G CGAA

Somatic SNP Germline SNP

Reference

Analysis of two samples necessary

Somatic Variants

 $\mathsf{KREBS} \leftrightarrow \mathsf{KONTROLLE}$

Deletions

CAGCATTGAAATA GGCACAT	CGAA	Cancer Genome
CAGCATTGAAATA TATA GGCACAT	CGAA	Control Genome
CAGCATTGAAATA TATA GGCACAT	GCTGCT CGAA	Reference
Somatic Deletion	Germline Deletion	
Insertions		
CAGCATTGAAATA TATA GGCACAT	GCTGCT CGAA	Cancer Genome

CAGCATTGAAATA ---- GGCACAT GCTGCT CGAA Control Genome

CAGCATTGAAATA ---- GGCACAT ----- CGAA Re

Reference

Somatic Insertion Germline Insertion

How to Discover Genetic Variants?

GENETIC VARIANTS: MODES OF DISCOVERY

Re-Sequencing

- Sequence DNA of genome of interest
- Align resulting reads against reference genome
- Note down all differences

DE NOVO ASSEMBLY

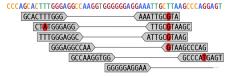
- Sequence DNA of genome of interest
- Connect resulting reads to form full-length genome
- Note down differences as per full-length comparison with reference genome

SOMATIC VARIANTS

Note down differences between cancer and control as well

NEXT GENERATION SEQUENCING

1. Extract Donor Genome DNA


2. Break into fragments

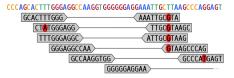
3. Sequence fragments

4. Map against reference genome

- For reference guided variant discovery, start from 4.
- ► For de novo assembly, start from 3.

NEXT GENERATION SEQUENCING

1. Extract Donor Genome DNA


2. Break into fragments

3. Sequence fragments

4. Map against reference genome

- For reference guided variant discovery, start from 4.
- ► For de novo assembly, start from 3.

Re-Sequencing

RE-SEQUENCING: VARIANT DISCOVERY

Evaluate signals emerging from aligned reads

SNP'S AND SMALL INDELS

► Look at alignments of single reads with reference

RE-SEQUENCING: VARIANT DISCOVERY

Evaluate signals emerging from aligned reads

SNP's and small indels

Look at alignments of single reads with reference

STRUCTURAL VARIANTS

- Variants may still yield signals in alignments directly
- Variants give rise to signals in paired-end alignments

RE-SEQUENCING: VARIANT DISCOVERY

Evaluate signals emerging from aligned reads

SNP's and small indels

► Look at alignments of single reads with reference

STRUCTURAL VARIANTS

- Variants may still yield signals in alignments directly
- ► Variants give rise to signals in paired-end alignments

Example: Read Pair Signals

Reference genome

CCCAGCACTTTGGGAGGCCAAGGTGGGGGGGGGGGGAGGAAATTGCTTAAGCCCAGGAGT

Reference genome

Sequenced genome

CCCAGCACTTTGGGAGGCCAAAAATTGCTTAAGCCCAGGAGT

Reference genome CCCAGCACTTTGGGAGGCCAAGGTGGGGGGGGGGGGGGAGGAAATTGCTTAAGCCCAGGAGT Sequenced genome CCCAGCACTTTGGGAGGCCAAAAATTGCTTAAGCCCAGGAGT Fragment

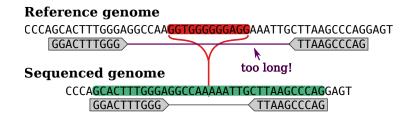
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reference genome

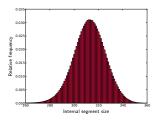
CCCAGCACTTTGGGAGGCCAA<mark>GGTGGGGGGGGGGG</mark>AAATTGCTTAAGCCCAGGAGT

Sequenced genome

CCCAGCACTTTGGGAGGCCAAAAATTGCTTAAGCCCAGGAGT


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Insertions: alignment length too short

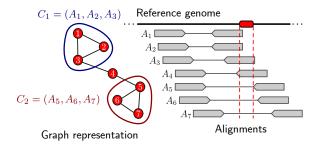


STATISTICAL QUANTIFICATION

FRAGMENT LENGTH DISTRIBUTION

- fragment length ~ $\mathcal{N}_{\mu,\sigma}$
- alignment length L: the greater $|L \mu|$, the more significant

DISCOVERING TWILIGHT ZONE INDELS



IGV snapshot Red alignment group: deletion

- Statistical significance increases
 - with increasing numbers of supportive alignments
 - with length of deletion
- Twilight Zone: Deletions of length 30 - 150 bp
 - < 30 bp: discovered directly by alignment
 - > 150 bp: single alignment significant

READ ALIGNMENT GRAPH

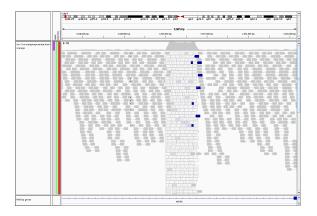
- ► Graph theoretical modeling:
 - Nodes: Paired-end alignments
 - Edges: Overlapping, length compatible alignments
 - Wanted: Groups of nodes sharing many edges



Genome Assembly

GENOME ASSEMBLY

STEP BY STEP



Nature Reviews | Genetics

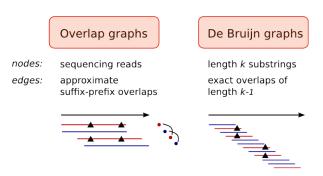
From Contigs To Scaffolds: Why?

REPETITIVE SEQUENCE

- Repetitive areas disturb the problem decisively
- Make contigs from reads exhibiting unique sequence
- Make scaffold of contigs, to bridge repetitive sequence

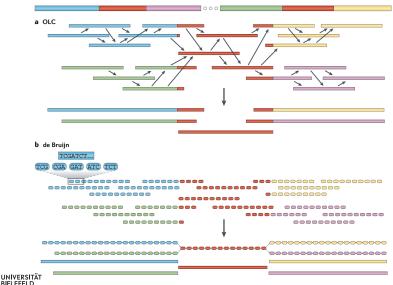
GENERATING CONTIGS

- De novo assembly programs usually deliver contigs
- Scaffolding requires data from additional, unconventional sources
- ▶ We will focus on contig generation in the following



GENERATING CONTIGS

- De novo assembly programs usually deliver contigs
- Scaffolding requires data from additional, unconventional sources
- ► We will focus on contig generation in the following



GENERATING CONTIGS: ASSEMBLY PARADIGMS

Assembly Paradigms

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへで

GENOME ASSEMBLY PARADIGMS

Overlap-Layout-Consensus Paradigm

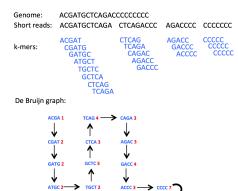
- Natural approach: identify overlapping fragments
- ► Seminal paper: [Kececioglu, Myers, 1995]
- ► In use at Celera for human genome assembly

GENOME ASSEMBLY PARADIGMS

Overlap-Layout-Consensus Paradigm

- ► Natural approach: identify overlapping fragments
- ► Seminal paper: [Kececioglu, Myers, 1995]
- ► In use at Celera for human genome assembly

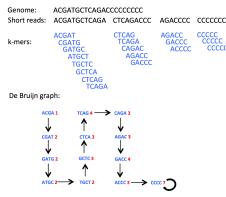
De Bruijn Graph Paradigm


- Construct *de Bruijn graph* from sequence fragments
- "Cut pieces into even smaller pieces to solve the puzzle"
- ► Seminal paper: [Pevzner, Tang, Waterman, PNAS 2001]
- Predominant paradigm for NGS based genome assembly

De Bruijn Graphs

DE BRUIJN GRAPHS

Assembled Contigs: ACGATGCTCAGACCCC


BIELEEELD

[Lu, Shen, Warren and Walter, 2016]

Advantages:

- Removes redundancy among reads
- Easy to construct and store

DE BRUIJN GRAPHS

Assembled Contigs: ACGATGCTCAGACCCC

[Lu, Shen, Warren and Walter, 2016]

Advantages:

- Removes redundancy among reads
- Easy to construct and store

Issues:

- looses information about linked mutations
- works only well with error-corrected reads

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DE BRUIJN GRAPHS

SUMMARY

- Superior for NGS based consensus genome assembly
- For polyploid genome assembly: *colored de Bruijn graphs* (not treated here, but seem to have certain limitations)
- (Likely severe) limitations for polyploid genome assembly:
 - Error correction removes lowly frequent true mutations
 - Loose information about linked mutations

Overlap-Layout-Consensus

OVERLAP-LAYOUT-CONSENSUS (OLC)

- **Overlap**: Construct overlap graph from sequencing reads
- Layout: Compute *contigs*, longer stretches of overlapping reads using the overlap graph
- **Consensus**: Compute consensus sequence for contigs

OLC AND POLYPLOID GENOMES

SUMMARY

Advantages

- ► Edges ^{IS} overlapping reads from the same haplotype
- Error correction *after graph construction*

Disadvantages

- Overlap graph construction time and space consuming
- Error correction: new ideas required

Overlap Graph Construction

OVERLAP GRAPH CONSTRUCTION

Without reference genome

For each pair of reads, determine

- ► how they optimally overlap
- whether the resulting overlap indicates that the two reads are from the same haplotype (statistically significantly likely!)

Naive approaches infeasible!

Literature

LITERATURE REFERENCES

REVIEWS

- Structural Variant Discovery: "Genome structural variation discovery and genotyping", by Alkan et al., Nature Reviews Genetics, 2011
- De Novo Assembly: "Genetic variation and the de novo assembly of human genomes", Chaisson et al., Nature Reviews Genetics, 2015
- Long-range sequencing: "Piercing the dark matter: bioinformatics of long-range sequencing and mapping", Sedlazeck, et al., Nature Reviews Genetics, 2018
- Somatic Structural Variant Discovery: "Structural variant detection in cancer genomes: computational challenges and perspectives for precision oncology", van Belzen et al., Nature Precision Oncology, 2021

LITERATURE REFERENCES

PAPERS

- ► Varlociraptor: Koester et al., Genome Biology, 2020 (somatic variants)
- Delly: Rausch et al., Bioinformatics, 2012 (structural variants, also somatic)
- FreeBayes: Garrison and Marth, arXiv:1207.3907, 2012 (haplotype-aware small variants)
- *Hifiasm:* Cheng et al., Nature Methods, 2021 (de novo assembly of "HiFi" reads)
- MiniMap2: Heng Li, Bioinformatics, 2018 (overlap graph construction)
- Lancet: Narzisi et al., Communications Biology, 2018 (somatic variants)
- ► *GRIDSS:* Cameron et al., Genome Research, 2017 (rearrangement type variants)
- Sniffles: Sedlazeck et al., Nature Methods, 2018 (structural variants from long reads)
- NanoVar: Tham et al., Genome Biology, 2020 (structural variants from UNIVERSITATION reads)