### Social Networks

### Alexander Schönhuth



Bielefeld University July 8, 2021

### LEARNING GOALS TODAY / OVERVIEW

- ► Intro: Social Networks are Graphs
- How to Cluster Social Networks into Groups
- ► Non-overlapping communities: the Girvan-Newman Algorithm
- Overlapping communities: the Graph Affiliation Model
- Direct Discovery of Overlapping Communities



### Social Networks as Graphs



### SOCIAL NETWORKS: INTRODUCTION

BASIC EXAMPLES

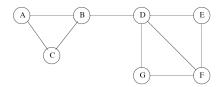
► Facebook, Twitter, Google+

DEFINING PROPERTIES

- Collection of entities participating in network
  - Usually people, but other entities conceivable
- There is a relationship between the entities
  - Being friends is frequent relationship
  - Relationship can be of 0-1 type, or weighted
- Assumption of nonrandomness or locality
  - Hard to formalize, intuition is that relationships tend to cluster
  - ► If entity A is related with both B and C, B and C are related with larger probability



# SOCIAL NETWORK GRAPHS: ENTITIES AND RELATIONSHIPS

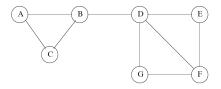


Adopted from mmds.org

- ► *Entities:* Nodes A to G
- Relationships: Represented by edges between nodes
  - ► *Example:* A is "friends" with B and C



### SOCIAL NETWORK GRAPHS: LOCALITY





- ► Locality:
  - There are 9 out of 21 possible edges:  $\frac{9}{21} = 0.429$
  - ► Given nodes *X*, *Y*, *Z* such that there are edges (*X*, *Y*), (*Y*, *Z*), random occurrence of (*X*, *Z*) is  $\frac{7}{19} = 0.368$
  - ► However, across all pairs of existing edges (X, Y), (Y, Z), probability that (X, Z) exists is <sup>9</sup>/<sub>16</sub> = 0.563
  - Network exhibits locality



### SOCIAL NETWORKS: EXAMPLES

#### ► Telephone Networks:

- ► *Nodes* are phone numbers, *edges* exist if one number called another
- *Edge weights:* Number of calls (within certain period of time)
- Communities: Groups of friends, members of a club, people working at same company
- ► Email Networks:
  - ▶ Nodes are email addresses, edges indicate exchange of emails
  - Edge directionality may matter, so graph with directed edges
  - Communities: Similar to telephone networks



### SOCIAL NETWORKS: EXAMPLES

#### ► Collaboration Networks:

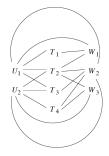
- Nodes e.g. represent authors, edges indicate working on same document
- Alternatively: nodes represent documents, edges indicate that identical author contributed
- Communities: Groups interested in / working on same subjects; documents sharing related content

#### ► Other:

- Information networks: Documents, web graphs, patents
- ▶ Infrastructure networks: Roads, planes, water pipes, power grids
- Biological networks: Genes, proteins, drugs
- Product co-purchasing networks: E.g. Groupon



### Several Types of Nodes



Adopted from mmds.org

#### EXAMPLES

- ► Figure: Users (U) put tags (T) on web pages (W): tri-partite network
- Put documents and authors into one bi-partite network



### **Clustering Social Networks**

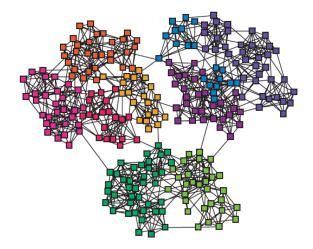


### **CLUSTERING SOCIAL NETWORKS: INTRODUCTION**

- An important aspect of social networks are *communities*
- Communities reveal themselves as groups of nodes that share unusually many edges
- Clustering social networks relates to the discovery of such communities



### COMMUNITIES

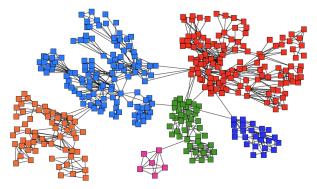


Differently Colored Communities in Social Network

Adopted from mmds.org



### CLUSTERED NETWORK



Differently Colored Clusters in Social Network

Adopted from mmds.org



### DISTANCE MEASURES IN SOCIAL NETWORKS

- Standard clustering techniques work with distance measures
- Distance measures are not obvious to define in social networks
  - Let  $x, y \in V$  be two nodes in a social network G = (V, E). The measure

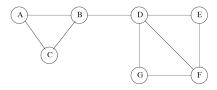
$$d(x,y) = \begin{cases} 0 & (x,y) \in E\\ 1 & (x,y) \notin E \end{cases}$$

violates the triangle inequality, hence is no distance measure

- ▶ Exchanging 0 with 1, and 1 with ∞ does not help
- Other binary-valued measures (e.g. 1 and 1.5) agree with triangle inequality
- ► *But:* Additional issues apply



### SOCIAL NETWORKS: CLUSTERING ISSUES



Communities: A-B-C and D-E-F-G



- ► Hierarchical Clustering: Randomly picks closest nodes/clusters
- Distance between clusters: distance between closest points
- ► As soon as clusters are joined on B and D, clusters not as desired
- Summary: Standard clustering techniques difficult/impossible to sensibly implement



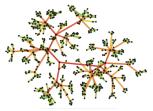
### Betweenness

*Idea:* Identify edges that are least likely to be within community DEFINITION [BETWEENNESS] The *betweenness* of an edge (a, b) is

- the number of pairs of nodes (x, y) such that (a, b) makes part of the *shortest path* leading from x to y
- ► If for (*x*, *y*) there are several shortest paths, (*a*, *b*) is credited the fraction of shortest paths leading through (*a*, *b*) when computing its betweenness



### Betweenness



#### Telephone network: Links between communities have great betweenness

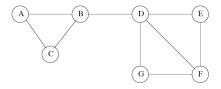
Adopted from mmds.org

Explanation

- ▶ High betweenness means that (*a*, *b*) is a bottleneck for shortest paths
- ► If nodes (*a*, *b*) lie within community, there are too many options for shortest paths to circumvent (*a*, *b*) (so (*a*, *b*) gets credited only small fractions)



### **BETWEENNESS: EXAMPLE**





• (B, D) has the greatest betweenness, 12

▶ It is on any shortest path between *A*, *B*, *C* and *D*, *E*, *F*, *G* 

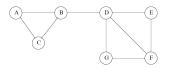
- (D, F) has betweenness 4
  - ▶ It lies on all shortest paths between *A*, *B*, *C*, *D* and *F*



CALCULATING BETWEENNESS

ALGORITHMIC PRINCIPLE

- Visit each node X once
- Compute shortest paths from *X* to any other node *Y*
- ► To visit nodes *Y* from *X*, perform breadth-first search (BFS)



Social Network; consider BFS from E

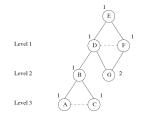
Adopted from mmds.org



CALCULATING BETWEENNESS

Algorithmic Principle

- ► Visit each node *X* once
- Compute shortest paths from *X* to any other node *Y*
- ► To visit nodes *Y* from *X*, perform breadth-first search (BFS)

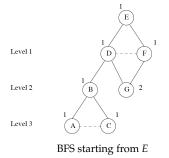


BFS starting from *E* on social network from slide before

Adopted from mmds.org



#### CALCULATING BETWEENNESS



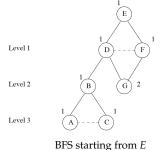
Adopted from mmds.org

#### INTUITION / NOTATION

- Length of shortest path from X to Y: level of BFS starting at X
- Edges within BFS level cannot be part of shortest paths from X
- Edges between different levels are referred to as DAG (directed acyclic graph) edges
- DAG edges are on at least one shortest path leaving from X



#### CALCULATING BETWEENNESS



Adopted from mmds.org

#### EXAMPLE NOTATION

- ► Solid edges = DAG edges: e.g. (D, B), (E, F)
- Dashed edges = within level: e.g. (D, F), (A, C)
- ► For DAG edge (*Y*, *Z*) where *Y* is closer to root *X* than *Z*:
  - ► *Y* is said to be the *parent*
  - ► Z is said to be the *child*



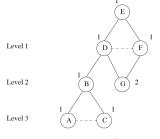
CALCULATING BETWEENNESS

TWO STAGES

- Labeling: For each node, assign number of shortest paths from root to that node
  - Proceed from root to leaves in BFS order
- Crediting: For each edge, compute contribution of shortest paths from root to betweenness of that edge
  - Need to compute credits for nodes as well
  - Proceed from leaves to root, bottom-up



#### CALCULATING BETWEENNESS



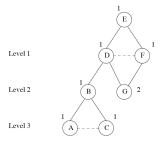
BFS starting from *E* Adopted from mmds.org

#### LABELING NODES

- Label each node by the number of shortest path to the root
- Start by labeling the root with 1
- Top-down, label each node by the sum of labels of each parents



#### CALCULATING BETWEENNESS



BFS starting from E: Labeling

Adopted from mmds.org

#### EXAMPLE LABELING

- ► Label the *root E* with 1
- Level 1: Each D and F have only E as parent; label both with 1
- ► Level 2:
  - *B* has only *D* as parent, label with 1
  - ► *G* has parents *D* and *F*, label with 2
- Level 3: Both A, C have only B as parent, so both are labeled with 1



CALCULATING BETWEENNESS

#### CREDITING NODES

- Compute fraction of shortest paths from root passing through node
- ► Credit each *leaf* with 1
  - ▶ If several shortest paths run to leaf, fractions add up to 1
- Each *non-leaf node* v gets credit

$$1 + \sum_{e \in \mathcal{D}(v)} c(e) \tag{1}$$

where  $\mathcal{D}(v)$  are the DAG edges leaving from v, and c(e) is the credit of an edge e

How to credit edges?



CALCULATING BETWEENNESS

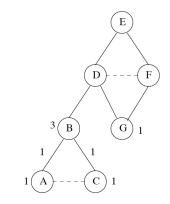
### CREDITING EDGES

- ► Let u<sub>j</sub>, j = 1, ..., k be the parents of w; so (u<sub>j</sub>, w) are the DAG edges entering w
- ► Let N<sub>j</sub>, j = 1, ..., k be the number of shortest paths from root running through edges (u<sub>j</sub>, w)
- *Recall:* N<sub>j</sub> agrees with the *label* of u<sub>j</sub>, the number of shortest paths from root to u<sub>j</sub> ...
- ... because every shortest path from root to u<sub>j</sub> is a shortest path from root to w
- Let c(w) be the credit of w
- We compute the credit of  $(u_i, w)$  as

$$c(u_i, w) := c(w) \times \frac{N_i}{\sum_{j=1}^k N_j}$$
<sup>(2)</sup>



CALCULATING BETWEENNESS



Crediting Nodes and Edges in Level 3 and 2

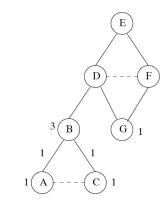
Adopted from mmds.org

EXAMPLE CREDITING

- Level 3 Nodes: Credit each of nodes A and C with 1
- ► *Level 2-3 Edges:* Both *A* and *C* have only one parent, so full credit 1 is assigned to both (*B*, *A*) and (*B*, *C*)



CALCULATING BETWEENNESS



Crediting Nodes and Edges in Level 3 and 2

Adopted from mmds.org

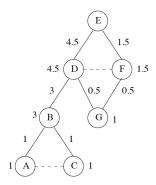
#### EXAMPLE CREDITING

Level 2 Nodes:

- ► *G* is a leaf, so gets credit 1
- ▶ B is not a leaf, so gets credit 1 + sum of credits 1 of DAG edges (B, A), (B, C) leaving from it: credit 3 overall
- Intuitively, credit 3 for *B* refers to all shortest paths from *E* to *A*, *B*, *C* going through *B*.



CALCULATING BETWEENNESS



Crediting Nodes and Edges Adopted from mmds.org

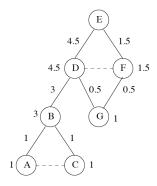
EXAMPLE CREDITING

Level 1-2 Edges:

- ► *B* has only one parent, *D*, so the edge (*D*, *B*) gets all of *B*'s credit
- ► (D, G), (F, G): Both D, F have label (not credit!) 1. So we credit both (D, G), (F, G) with 1/(1+1) = 0.5
- *Example:* If labels of *D* and *F* had been 3 and 5, the credit of (D, G) would be 3/(3+5) = 3/8 and that of (F, G) would be 5/8.



#### CALCULATING BETWEENNESS



Crediting Nodes and Edges Adopted from mmds.org EXAMPLE CREDITING

Level 1 Nodes / Edges:

- D gets credit 1 + credits of (D, B), (D, G) = credit 4.5 overall
- ► *F* gets credit 1 + credit of (*F*, *G*) = credit 1.5 overall
- Edges (E, D), (E, F) receive credits of D, F respectively, because D, F each have only one parent

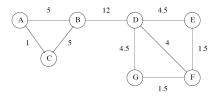
*Summary:* Credit on each edge is contribution to betweenness of that edge to shortest paths from *E* 



SUMMARY

COMPLETING THE ALGORITHM

- ► Repeat the calculation illustrated for *E* for every other node
- ► Sum up the contributions for each edge across different roots
- Divide each edge weight by 2: each shortest path is counted twice, with each of its end points as root

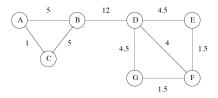


Betweenness Scores

Adopted from mmds.org



### FINDING COMMUNITIES WITH BETWEENNESS



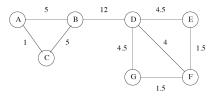
Betweenness Scores Adopted from mmds.org

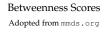
COMPUTING COMMUNITIES: PRINCIPLE

- Remove edges in decreasing order of betweenness
- Stop at reasonably chosen threshold
- Communities are the resulting connected components



### FINDING COMMUNITIES WITH BETWEENNESS





#### COMPUTING COMMUNITIES: EXAMPLE THRESHOLD 4

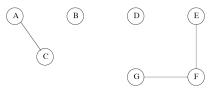
- First, remove (B, D): communities  $\{A, B, C\}, \{D, E, F, G\}$
- ► Second, remove (A, B), (B, C): communities  $\{A, C\}, \{B\}, \{D, E, F, G\}$
- ▶ Third, remove (D, E), (D, G): communities  $\{A, C\}, \{B\}, \{D, E, F, G\}$
- Last, remove (D, F): communities  $\{A, C\}, \{B\}, \{D\}, \{E, F, G\}$



### FINDING COMMUNITIES WITH BETWEENNESS

Computing Communities: Example Threshold 4

- First, remove (B, D): communities  $\{A, B, C\}, \{D, E, F, G\}$
- ► Second, remove (A, B), (B, C): communities  $\{A, C\}, \{B\}, \{D, E, F, G\}$
- ▶ Third, remove (D, E), (D, G): communities  $\{A, C\}, \{B\}, \{D, E, F, G\}$
- Last, remove (D, F): communities  $\{A, C\}, \{B\}, \{D\}, \{E, F, G\}$



Final Communities

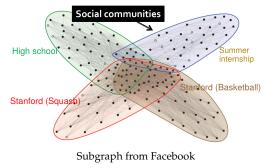
Adopted from mmds.org



### The Graph Affiliation Model



#### **OVERLAPPING COMMUNITIES**

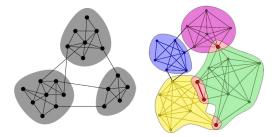


Adopted from mmds.org

- *Observation:* Communities in social networks can overlap
- Graph partitioning does not help in these cases

► Would like to have a statistical interpretation of network data

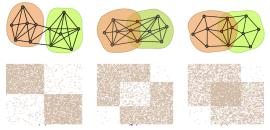
### NONOVERLAPPING VERSUS OVERLAPPING COMMUNITIES



Left: Nonoverlapping communities Right: Overlapping communities Adopted from mmds.org

- Communities may overlap or not
- Issue: How to determine communities correctly?





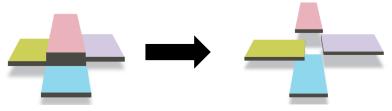
#### Networks and their adjacency matrices

Adopted from mmds.org

- ► Left: No overlap, adjacency matrix sparse across communities
- Middle: Loose overlap, adjacency matrix less sparse in shared part
- Right: Tight overlap, adjacency matrix dense in shared part



#### COMMUNITY DISCOVERY: GOAL



Revealing (overlapping) communities

Adopted from mmds.org

- ► *Goal:* Discover communities correctly
- Regardless of whether they overlap or not

Determine the statistically most likely community structure

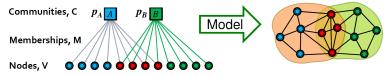


- ► *Issue:* Statistical control over community structure of a network
- ► Idea: Design generative probability distribution
- Given a number of nodes, this generative distribution generates edges
- The generative distribution represents a particular community structure
  - The distribution knows about nodes belonging to communities
  - It generates more edges within communities
  - It generates less edges between communities



The generative distribution represents community structures

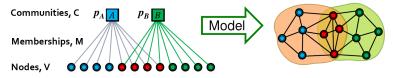
- The distribution knows about nodes belonging to communities
- It generates more edges within communities
- It generates less edges between communities



Distribution representing a community structure generating network

Adopted from mmds.org





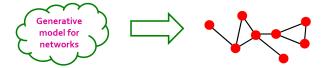
Distribution representing a community structure (left) generating network (right) Adopted from mmds.org

- ► We can generate networks when knowing community structure
- ► *But:* We would like to determine the community structure when knowing the network

Isn't that exactly the opposite?



#### GENERATIVE DISTRIBUTIONS



We can do this: generating network from distribution...

Adopted from mmds.org



...but we want this: inferring distribution from network

Adopted from mmds.org



# GENERATIVE DISTRIBUTIONS: MAXIMUM LIKELIHOOD INFERENCE



We want to infer distribution from network

Adopted from mmds.org

Maximum Likelihood Estimation

- Let Θ be a *parameterized class of probability distributions* that generate networks
  - We identify the different distributions with the different parameterizations
     Formally not 100% correct, but doesn't matter here
- ► Let  $\mathbf{P}(N \mid \theta)$  be the probability that distribution  $\theta \in \Theta$  generates network *N*



# GENERATIVE DISTRIBUTIONS: MAXIMUM LIKELIHOOD INFERENCE



We want to infer distribution from network

Adopted from mmds.org

Maximum Likelihood Estimation

- ► Let  $\mathbf{P}(N \mid \theta)$  be the probability that distribution  $\theta \in \Theta$  generates network *N*
- Maximum likelihood estimation: Determine distribution θ̂ that generated N with greatest likelihood:

$$\hat{\theta} := \operatorname*{arg\,max}_{\theta \in \Theta} \mathbf{P}(N \mid \theta) \tag{3}$$

UNIVERSITÄT This computes most reasonable distribution  $\hat{\theta}$  for network N belefeld

#### AFFILIATION GRAPH MODEL: DEFINITION I

- An AGM θ generates a network N = (V, E) by adding edges E to a given set of nodes V
- ► For  $u, v \in V$ , edge (u, v) is generated with probability  $\mathbf{P}_{\theta}((u, v))$
- $\mathbf{P}_{\theta}((u, v))$  depends on the parameters  $\theta$
- Recall that  $\theta$  specifies community structure

So, what exactly is  $\theta$  supposed to be?



#### AFFILIATION GRAPH MODEL: PARAMETERS

- C, as a set of *communities*
- $M \in \{0,1\}^{C \times V}$ , specifying assignment of nodes  $v \in V$  to communities  $C \in C$ , where

$$M_{C,v} = \begin{cases} 1 & v \text{ belongs to } C \\ 0 & \text{otherwise} \end{cases}$$
(4)

- *M* specifies "affiliations" of nodes  $v \in V$
- Note that one can vary C, as a parameter, but not V
- ►  $(p_C)_{C \in C}$  as probabilities to generate edges (u, v) because  $u, v \in C$
- Summary: A particular AGM  $\theta$  corresponds to

$$\theta = (\mathcal{C}, M, (p_C)_{C \in \mathcal{C}}) \tag{5}$$



**Several** *C* **containing both** *u*, *v* 

- Let  $M_u, M_v \subset C$  be the subsets of communities that contain u and v, respectively
- Existence of communities that contain both *u*, *v* means

 $M_u \cap M_v \neq \emptyset$ 

- Memberships in different communities have no influence on each other
- ► That is, we assume *statistical independence*



**Several** *C* **containing both** *u*, *v* 

Statistical independence is expressed by

$$\prod_{C \in M_u \cap M_v} (1 - p_C)$$

as probability of *no edge* (u, v) *in any community*  $C \in M_u \cap M_v$ 

• Hence, the probability to generate (u, v) is

$$1 - \prod_{C \in M_u \cap M_v} (1 - p_C) \tag{6}$$

**Done? No:** What about 
$$M_u \cap M_v = \emptyset$$
?



#### **No** *C* **containing both** *u*, *v*

► For  $M_u \cap M_v = \emptyset$ , computing (6) yields (empty product is 1)

$$1 - \prod_{C \in \emptyset} (1 - p_C) = 1 - 1 = 0$$

- No edges across communities makes no sense
- Let  $\epsilon > 0$  be small; we generate an edge (u, v) with probability

$$\mathbf{P}_{\theta}((u,v)) = \epsilon \quad \text{if} \quad M_u \cap M_v = \emptyset$$



AFFILIATION GRAPH MODEL (AGM)

• An edge (u, v) is generated with probability

$$\mathbf{P}_{\theta}((u,v)) = \begin{cases} 1 - \prod_{C \in M_u \cap M_v} (1 - p_C) & M_u \cap M_v \neq \emptyset \\ \epsilon & M_u \cap M_v = \emptyset \end{cases}$$
(7)

- Edges (u, v) are generated independently from one another
- *Overall:* The probability  $\mathbf{P}_{\theta}(E)$  to generate edges *E* given AGM  $\theta$  computes as

$$\mathbf{P}_{\theta}(E) = \prod_{(u,v)\in E} \mathbf{P}_{\theta}((u,v)) \times \prod_{(u,v)\notin E} 1 - \mathbf{P}_{\theta}((u,v))$$
(8)

where  $\mathbf{P}_{\theta}((u, v))$  are computed following (7), with  $\theta = (\mathcal{C}, M, p_{C})$  determining  $p_{C}$  and  $M_{u}, M_{v}$  and so on.



#### AFFILIATION GRAPH MODEL: OVERALL PROBABILITY

AFFILIATION GRAPH MODEL (AGM)

• The probability  $\mathbf{P}_{\theta}(E)$  to generate *E* given  $\theta$  is

$$\mathbf{P}_{\theta}(E) = \prod_{(u,v)\in E} \mathbf{P}_{\theta}((u,v)) \times \prod_{(u,v)\notin E} 1 - \mathbf{P}_{\theta}((u,v))$$
(9)

• *Reminder:* For a given network N = (V, E), the *goal* is to determine

 $\hat{\theta} := \operatorname*{arg\,max}_{\theta \in \Theta} \mathbf{P}_{\theta}(E)$ 

• That is, we need to vary  $\theta = (C, M, p_C)$  until  $\mathbf{P}_{\theta}(E)$  is maximal

How to systematically vary  $\theta = (C, M, p_C)$ ?



ISSUES

- Search space of combinations of
  - ► Communities *C*,
  - ► Assignments of nodes to communities *M*, and
  - Probabilities *p*<sub>C</sub> for communities

tends to be huge

- Concise formulas of (9) for  $\mathbf{P}_{\theta}(E)$  as function of  $\theta$  too difficult
- ► Analytical solution for determining \(\heta\) := arg max<sub>\(\theta\) \in \OPE\)</sub> P<sub>\(\theta\)</sub>(E) not available
- Moreover, parameters are both discrete (C, M) and continuous (( $p_C$ )<sub> $C \in C$ </sub>)



Approach

- 1. Pick initial set of parameters  $\theta_0$
- 2. Vary  $\theta$  such that  $\mathbf{P}_{\theta}(E)$  iteratively increases
- 3. Vary C or M first

Partial derivates of  $\mathbf{P}_{\theta}(E)$  wrt.  $p_{C}$  computable on fixed C, M

- 4. Determine optimal  $(p_C)_{C \in C}$ , e.g. by gradient descent
- 5. Keep change if  $\mathbf{P}_{\theta}(E)$  has increased, discard otherwise



Iterative variations of  $\mathcal{C}, M$ 

- ► Varying M:
  - Delete node from community, i.e. for  $M_{C,v} = 1$ , set  $M_{C,v} = 0$
  - Add node to community, i.e. for  $M_{C,v} = 0$ , set  $M_{C,v} = 1$
- ► Varying C:
  - Merge two communities
  - Split community
  - Delete community
  - Add new community, with initial random selection of members



SOFT COMMUNITY MEMBERSHIP

- ▶ Instead of  $M_{C,v} \in \{0,1\}$ , allow any real-numbered  $M_{C,v} \ge 0$
- For (u, v) to be generated because of  $u, v \in C$ , let

$$\mathbf{P}_{\theta}((u,v)) = 1 - e^{-M_{C,u}M_{C,v}}$$
(10)

be the individual probability

Proceeding exactly as before, we obtain

$$\mathbf{P}_{\theta}(E) = \prod_{(u,v)\in E} (1 - e^{-\sum_{C} M_{C,u} M_{C,v}}) \prod_{(u,v)\notin E} e^{-\sum_{C} M_{C,u} M_{C,v}}$$
(11)



SOFT COMMUNITY MEMBERSHIP

► Probability for edges *E*:

$$\mathbf{P}_{\theta}(E) = \prod_{(u,v)\in E} (1 - e^{-\sum_{C} M_{C,u} M_{C,v}}) \prod_{(u,v)\notin E} e^{-\sum_{C} M_{C,u} M_{C,v}}$$
(12)

- On fixed communities, include *M* in gradient descent (or related) optimization step
- ► Advantages:
  - Only one gradient descent run necessary
  - Less prone to get stuck in unfavorable local optima
- ► If necessary, add or delete communities, and re-run



#### Direct Discovery of Overlapping Communities



#### INTRODUCTION

- *Popular idea:* Determine communities as (induced) subgraphs of a certain type
- Subgraphs should contain unusually large amount of edges
- Subgraphs are allowed to overlap
- ► Will treat two types briefly here:
  - ► Cliques
  - Complete bipartite subgraphs



#### FINDING CLIQUES

DEFINITION [INDUCED SUBGRAPH] Let G = (V, E) be a graph. A subgraph  $C = (V' \subset V, E' \subset E)$  is *induced* iff  $(v', w') \in E$  implies  $(v', w') \in E'$ 

for any  $v', w' \in V'$ .

DEFINITION [CLIQUE]

Let G = (V, E) be a graph.

- An induced subgraph C = (V', E') is called a *clique* iff any pair of nodes in *C* is connected by an edge.
- ► A clique C = (V', E') is *maximal* iff extending the clique by any node and its edges implies that the clique property no longer holds.



#### Communities as Cliques

- Possible idea: Determine communities as maximal cliques
- *Caveat:* The number of maximal cliques in a graph may be exponential in the number of nodes
- So, listing all maximal cliques is a computationally demanding problem
- Nevertheless, identifying communities as clique like arrangements is popular



#### COMPLETE BIPARTITE GRAPHS

DEFINITION [(COMPLETE) BIPARTITE GRAPHS]

A graph G = (V, E) with vertices V and edges E is referred to as *bipartite* iff

• there are  $V_1, V_2 \subset V$  such that

 $V = V_1 \cup V_2$  and  $E \subset (V_1 \times V_2)$ 

• A bipartite graph G = (V, E) is *complete* iff

 $V = V_1 \stackrel{.}{\cup} V_2$  and  $E = (V_1 \times V_2)$ 

that is iff each node from  $V_1$  is connected with each node from  $V_2$ 

- A complete bipartite graph where  $|V_1| = s$ ,  $|V_2| = t$  is referred to as  $K_{s,t}$
- A complete bipartite graph is also referred to as *biclique*



#### COMPLETE BIPARTITE GRAPHS AND COMMUNITIES

- ► *Strategy:* Seek to discover all sufficiently large bicliques
- ► Treat them as "nuclei" (or seeds) of communities
- ► *Theoretical Advantage over Cliques:* While it is not possible to guarantee the existence of large cliques for graphs with many edges, one can guarantee the existence of large bicliques



#### FINDING COMPLETE BIPARTITE GRAPHS

Frequent Itemset Mining Problem

- ► Let G = (V, E) on  $V = V_1 \cup V_2$  be a (large) bipartite graph
- Items are nodes from  $V_1$
- ► Baskets are nodes from *V*<sub>2</sub>
- ▶ Items in baskets are nodes from *V*<sup>1</sup> connected to basket node
- $K_{s,t}$  in *G* is itemset of size *s* that appears in *t* baskets
- So mining for frequent itemsets at threshold *t* dicovers all  $K_{s,t}$



#### GENERAL / FURTHER READING

Literature

- Mining Massive Datasets, Sections 10.1, 10.2, 10.3, 10.5 http://infolab.stanford.edu/~ullman/mmds/ ch10.pdf
- Next lecture: "Web Advertisements": sections 8.1 8.4 in Mining of Massive Datasets

