Recommendation Systems

Alexander Schönhuth

Bielefeld University
 July 1, 2021

Learning Goals Today

- Intro: Model for Recommendation Systems
- Collaborative Filtering
- Dimensionality Reduction: The UV Decomposition

Recommendation Systems Introduction

RECOMMENDATION SYSTEMS

- Recommendation systems are
- are web applications
- predict user responses to options
- Examples:
- Offering articles to online newspaper readers based on predicting reader interests
- Offering online retailer suggestions to customers based on prior purchases / searches
- Classification:
- Content based systems: characterize properties of items examined movie is "cowboy" movie if watched by many users liking cowboy movies
- Collaborative filtering systems: recommend items based on similarity measures between users and/or items

Recommendation Systems: Foundations

- The Utility Matrix: Putting users and items into context
- Long Tails: Contain items that serve only small amounts of users
- Long tail items not displayable in regular stores, while full range of products available online
- Recommending in online and regular stores differs decisively
- Applications:
- Recommending products
- Recommending movies
- Recommending news articles

The Utility Matrix

Definition [Utility Matrix]:

- Let m be the number of users
- Let n be the number of items
- Let S be a set of ratings/values, including an element "_-" representing "unknown"
- The utility matrix $M \in S^{m \times n}$ has m rows and n columns where

$$
\begin{equation*}
M_{u i} \in S \tag{1}
\end{equation*}
$$

reflects the degree of preference of user $u \in\{1, \ldots, m\}$ for item $i \in\{1, \ldots, n\}$.

- If $M_{u i}={ }_{--}$, the degree of preference of user u for item i is unknown.

The Utility Matrix: Example

- The utility matrix $M \in S^{m \times n}$ has m rows and n columns where

$$
M_{u i} \in S
$$

reflects the degree of preference of user u for item i.

- If $M_{u i}={ }_{--}$, the degree of preference of user u for item i is unknown.

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$ Adopted from mmds.org

The Utility Matrix: Goal

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix reflecting users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Goal: Predict values from S other than _- for unknown entries $M_{u i}={ }_{-}$
- Note that in applications, not every value needs to be predicted
- Sufficiently many predictions for a user suffice

The Utility Matrix: Example

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix reflecting users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- HP = Harry Potter, TW = Twilight, $S W=$ Star Wars
- E.g. user A likes Twilight, user B likes Harry Potter
- Possible question: Will user A like movie SW2?
- Note similarity between SW1 and SW2, note that A disliked SW1
- Answer: Possibly not!

Populating the Utility Matrix

- Acquiring data from which to build utility matrix can be difficult
- User Ratings: Ask users to provide estimates; however
- Users are unwilling to provide responses
- Ratings are biased towards those willing
- Infer from users' behaviour
- Once bought item / watched movie, rate as liked by user
- Value system only has 0 and 1, where 0 reflects --

The Long TAIL

- Physical stores
- suffer from limited resources for items
- e.g. can offer several thousands of books
- Recommendation: Pick most purchased items and recommend to everyone
- Online stores
- do not suffer from lack of resources
- e.g. can offer several millions of books
- Recommendation: Substantially more involved
- The Long Tail Phenomenon explains why recommendations systems are necessary

The Long Tail: IlLUstration

Items (x-axis) rated by popularity (y-axis); vertical bar: cutoff in physical stores Adopted from mmds.org

Recommendation Systems: Applications

- Product Recommendations
- Amazon offers products to returning users based on prior purchases
- Extreme example: "Touching the Void" only increased in popularity after "Into Thin Air" appeared on the market
- Movie Recommendations
- Netflix suggests movies to watch to users
- Netflix offered one million dollars for algorithm beating their own recommendation system by 10%
- Price was won in 2009 by team of researchers called "Bellkor's Pragmatic Chaos"
- News Articles
- Identify articles of interest to readers
- Similarity based on similarity of important words and/or articles read by people with similar interests
- YouTube is another example

Content Based Recommendations

- Content based systems focus on properties of items
- Determine features that describe the items
- Represent items as vector in feature space
- E.g. represent movies as bitvectors where entries relate to actors: 1 means actor plays in movie, $0 \mathrm{~s} /$ he doesn't
- For recommending items to users:
- Develop user representations referring to the same feature space
- E.g. represent movie watchers as vector where entries represent preferences for actors
- Recommendation: Item bitvectors that are similar to user vector representations
- Jaccard distance, Cosine distance etc.

Collaborative Filtering

Collaborative Filtering: Introduction

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Instead of item profiles, make direct use of utility matrix
- Items are represented by columns in utility matrix
- Users are represented by rows in utility matrix
- Recommendations:
- Identify users that are similar to the particular user
- Recommend items considered by the users identified as similar

How to compute user similarity?

Collaborative Filtering: Introduction

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$ Adopted from mmds.org

- A and B watched only one movie together, which they both liked
- A and C watched two movies together, but seem to have opposite opinions in both cases

Good similarity measure supposed to reflect this

Collaborative Filtering: Jaccard Distance

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Users = sets of movies, containing all movies they watched

$$
\operatorname{SIM}(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{1}{5}<\frac{1}{2}=\frac{2}{4}=\frac{|A \cap C|}{|A \cup C|}=\operatorname{SIM}(A, C)
$$

- Conclusion: Not a good idea when utility matrix contains ratings

Collaborative Filtering: Cosine Distance

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mms . org

- Users are vectors of integers
- Compute cosine of angle between user vectors
- Treat blanks as zeroes

Questionable idea: missing rating = bad rating

Collaborative Filtering: Cosine Distance

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Rounded utility matrix users \times movies
Adopted from mmds.org

- Cosine(A,B):

$$
\frac{4 \times 5}{\sqrt{4^{2}+5^{2}+1^{2}} \sqrt{5^{2}+5^{2}+4^{2}}}=0.380
$$

- Cosine(A,C):

$$
\frac{5 \times 2+1 \times 4}{\sqrt{4^{2}+5^{2}+1^{2}} \sqrt{2^{2}+4^{2}+5^{2}}}=0.322
$$

- Conclusion: Points in the right direction

Collaborative Filtering: Rounding Data

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	1			1			
B	1	1	1				
C					1	1	
D		1					1

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Round at cutoff: $0,1,2 \rightarrow 0 ; 3,4,5 \rightarrow 1$

$$
\operatorname{SIM}(A, B)=\frac{1}{4}>0=\operatorname{SIM}(A, C)
$$

- Conclusion: Points in the right direction as well

Collaborative Filtering: Normalizing Data

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	$2 / 3$			$5 / 3$	$-7 / 3$		
B	$1 / 3$	$1 / 3$	$-2 / 3$				
C				$-5 / 3$	$1 / 3$	$4 / 3$	
D		0					0

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Subtract average rating of respective user from each rating
- Low ratings become negative numbers
- High ratings become positive numbers
- Cosine distance:
- Users with opposite views = vectors pointing in opposite directions
- Users with similar views = small angle between vectors

Collaborative Filtering: Normalizing Data

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	$2 / 3$			$5 / 3$	$-7 / 3$		
B	$1 / 3$	$1 / 3$	$-2 / 3$				
C				$-5 / 3$	$1 / 3$	$4 / 3$	
D		0					0

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$ Adopted from mmds.org

- User D essentially disappeared (because of too indifferent ratings)
- Cosine(A,B):

$$
\frac{(2 / 3) \times(1 / 3)}{\sqrt{(2 / 3)^{2}+(5 / 3)^{2}+(-7 / 3)^{2}} \sqrt{(1 / 3)^{2}+(1 / 3)^{2}+(-2 / 3)^{2}}}=0.092
$$

- Cosine(A,C):

$$
\frac{(5 / 3) \times(-5 / 3)+(-7 / 3) \times(1 / 3)}{\sqrt{(2 / 3)^{2}+(5 / 3)^{2}+(-7 / 3)^{2}} \sqrt{(-5 / 3)^{2}+(1 / 3)^{2}+(4 / 3)^{2}}}=-0.559
$$

Collaborative Filtering: Normalizing Data

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	$2 / 3$			$5 / 3$	$-7 / 3$		
B	$1 / 3$	$1 / 3$	$-2 / 3$				
C				$-5 / 3$	$1 / 3$	$4 / 3$	
D		0					0

Utility matrix users \times movies, where $S=\{1,2,3,4,5, \ldots\}$
Adopted from mmds.org

- Cosine $(\mathrm{A}, \mathrm{B})=0.092 ; \operatorname{Cosine}(\mathrm{A}, \mathrm{C})=-0.559$
- Conclusion: Makes sense
- A, B slight similarity, just one movie rated in common
- A, C disagree to a stronger degree

Duality of Similarity

- Utility matrix tells about users, or items, or both
- While we focused on user similarity, techniques presented so far can be applied to identify similar items, too
- However, difference is that items are classifiable, while users are not
- Movies can be classified according to genres
- Users are rather heterogeneous in terms of genres
- Consequence: Similar items are easier to discover

Duality of Similarity: Predictions

Predicting entries in utility matrix M

- First, normalize utility matrix (as described above)
- Let sim denote similarity measure of choice
- Let u be user, i be item; we would like to predict $M_{u i}$, where
- only predicting $M_{u i}$ is useless
- we need to predict $M_{u i}$ for many i, to put entries into mutual context

Duality of Similarity

Predicting entries in utility matrix M

- First approach: Select top m users $u_{j}, j=1, \ldots, m$ similar to u and compute

$$
\begin{equation*}
M_{u i}=\frac{1}{m} \sum_{j=1}^{m} \operatorname{sim}\left(u_{j}, u\right) M_{u_{j} i} \tag{2}
\end{equation*}
$$

- Advantage: One computation for several $M_{u i}$ for one u
- Disadvantage: Based on user similarity, which is less reliable
- Second approach: Select top m items $i_{j}, j=1, \ldots, m$ similar to i and compute

$$
\begin{equation*}
M_{u i}=\frac{1}{m} \sum_{j=1}^{m} \operatorname{sim}\left(i_{j}, i\right) M_{u i_{j}} \tag{3}
\end{equation*}
$$

- Advantage: Based on item similarity, which is more reliable
- Disadvantage: Need to consider several items i for one u

Clustering Utility Matrix

- The utility matrix is sparse; many entries are missing
- Two items, even if classified identically, miss users with entries for both of them
- Two users, even if having identical interests, miss items that they both have entries for
- For increasing coherence, and decreasing sparsity: cluster items, or users, or both

Clustering Utility Matrix

- For clustering, apply iterative procedure (hierarchical clustering):
- Cluster items, e.g. decreasing number of columns by factor of two
- Entries for clustered columns are averages of single entries
- Cluster users, e.g. decreasing number of rows by factor of two
- Entries for clustered rows are averages of single entries

	HP	TW	SW
A	4	5	1
B	4.67		
C		2	4.5
D	3		3

Utility matrix after one iteration of clustering items
Adopted from mmds.org

Clustering Utility Matrix: Predictions

	HP	TW	SW
A	4	5	1
B	4.67		
C		2	4.5
D	3		3

Utility matrix after one iteration of clustering items
Adopted from mmds.org

- After clustering, predict items $M_{u i}$ as follows:
- Identify clusters of user u (cluster X) and item i (cluster Y)
- Predict $M_{u i}$ as $M_{X Y}$ in the clustered utility matrix
- If $M_{X Y}$ is empty, use distance based methods to predict $M_{X Y}$, and predict $M_{u i}$ as $M_{X Y}$ when done

Dimensionality Reduction

The UV-DECOMPOSITION

- Let M be utility matrix, for m users and n items Important: In https://mmds.org, m and n are reversed
- Assumption: There are $d \leq m, n$ hidden features such that
- Users u can be represented as d-dimensional vectors across these features
- Items i can be represented as d-dimensional vectors across these features
- For example, for movies and watchers, hidden features may refer to genres
- How to reveal such hidden features?
- Solution: Apply UV-decomposition of M
- Note: Interpretation of meaning of hidden features may remain unclear

The UV-DECOMPOSITION

Definition [UV-DECOMPOSITION]

- Let $M \in \mathbb{R}^{m \times n}$ be a utility matrix; let $d \leq n, m$
- Let $U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{d \times n}$ such that

$$
U V \in \mathbb{R}^{m \times n} \text { approximates } M \in \mathbb{R}^{m \times n} \text { closely }
$$

- Then U, V is called a $U V$-Decomposition (relative to d) of M

$$
\left[\begin{array}{lllll}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4 &
\end{array}\right]=\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22} \\
u_{31} & u_{32} \\
u_{41} & u_{42} \\
u_{51} & u_{52}
\end{array}\right] \times\left[\begin{array}{lllll}
v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\
v_{21} & v_{22} & v_{23} & v_{24} & v_{25}
\end{array}\right]
$$

UV-decomposition of matrix M
Adopted from mmds.org

THE UV-DECOMPOSITION

$$
\left[\begin{array}{lllll}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4 &
\end{array}\right]=\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22} \\
u_{31} & u_{32} \\
u_{41} & u_{42} \\
u_{51} & u_{52}
\end{array}\right] \times\left[\begin{array}{lllll}
v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\
v_{21} & v_{22} & v_{23} & v_{24} & v_{25}
\end{array}\right]
$$

UV-decomposition of matrix M

Adopted from mmds.org

- Prediction: Estimate missing entry $M_{u i}$ as $(U V)_{u i}=\sum_{k=1}^{d} u_{u k} v_{k i}$
- Example: Predict missing M_{32} as $u_{31} v_{12}+u_{32} v_{22}$

Measuring Closeness

Definition [Root-Mean-Square Error]

- Let $M \in \mathbb{R}^{m \times n}$ be decomposed into $U V$ for $U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{d \times n}$
- Let l be the number of non-blank entries in M

The root-mean-square error (RMSE) of M and $U V$ is defined to be

$$
\begin{equation*}
\sqrt{\frac{1}{l} \sum_{\substack{u, i) \\ M_{u i} \neq-}}\left(M_{u i}-(U V)_{u i}\right)^{2}} \tag{4}
\end{equation*}
$$

that is the square root of the average over the squares of differences between $M_{u i}$ and $(U V)_{u i}$ for all (u, i) where $M_{u i}$ is not missing.

Example

- In the example from above

$$
\operatorname{RMSE}(M, U V)=\sqrt{\frac{1}{23}\left(5-\left(u_{11} v_{11}+u_{12} v_{21}\right)\right)^{2}+\ldots+\left(4-\left(u_{51} v_{14}+u_{52} v_{24}\right)^{2}\right.}
$$

UV Decomposition: Incremental Computation

Computing U, V: Idea

- Start with arbitrary (while still reasonably chosen) U, V
- Iterating through elements $U_{u k}, V_{k i}$, decrease $\operatorname{RMSE}(M, U V)$ by adjusting single entries $U_{u k}$ or $V_{k i}$ in U or V
- Do this until convergence; eventually, U, V may reflect local minima
- Repeat this by varying inital choices for U, V to get global minimum or suitable local minimum

UV DECOMPOSITION: InCREMENTAL COMPUTATION

$$
\left[\begin{array}{lllll}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4 &
\end{array}\right]
$$

Matrix M to be decomposed into $U V$
Adopted from mmds.org

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right] \times\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2
\end{array}\right]
$$

Initial choice for U, V
Adopted from mmds.org

$$
\text { Initial RMSE: } \sqrt{\frac{75}{23}}=1.806
$$

UV DECOMPOSITION: InCREMENTAL COMPUTATION

$$
\left[\begin{array}{lllll}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4 &
\end{array}\right]
$$

Matrix M to be decomposed into $U V$
Adopted from mmds.org

$$
\begin{gathered}
{\left[\begin{array}{ll}
x & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right] \times\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
x+1 & x+1 & x+1 & x+1 & x+1 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2
\end{array}\right]} \\
\text { Varying } x=U_{11} \\
\text { Adopted from mmds.org }
\end{gathered}
$$

Minimize contribution from $x=U_{11}$ to sum of squares:

$$
(5-(x+1))^{2}+(2-(x+1))^{2}+(4-(x+1))^{2}+(4-(x+1))^{2}+(3-(x+1))^{2}
$$

UV Decomposition: Incremental Computation

Minimize contribution from $x=U_{11}$ to sum of squares:

$$
(5-(x+1))^{2}+(2-(x+1))^{2}+(4-(x+1))^{2}+(4-(x+1))^{2}+(3-(x+1))^{2}
$$

which simplifies to

$$
(4-x)^{2}+(1-x)^{2}+(3-x)^{2}+(3-x)^{2}+(2-x)^{2}
$$

Take derivative and set to zero:

$$
-2 \times((4-x)+(1-x)+(3-x)+(3-x)+(2-x))=0 \quad \text { or } \quad-2 \times(13-5 x)=0
$$

from which we obtain $x=2.6$.

UV DECOMPOSITION: InCREMENTAL COMPUTATION

$$
\left[\begin{array}{lllll}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4 &
\end{array}\right]
$$

Matrix M to be decomposed into UV
Adopted from mmds.org

$$
\left[\begin{array}{ll}
2.6 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right] \times\left[\begin{array}{lllll}
y & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
2.6 y+1 & 3.6 & 3.6 & 3.6 & 3.6 \\
y+1 & 2 & 2 & 2 & 2 \\
y+1 & 2 & 2 & 2 & 2 \\
y+1 & 2 & 2 & 2 & 2 \\
y+1 & 2 & 2 & 2 & 2
\end{array}\right]
$$

Varying $y=V_{11}$
Adopted from mmds.org
Minimize contribution from $y=V_{11}$ to sum of squares:

$$
(5-(2.6 y+1))^{2}+(3-(y+1))^{2}+(2-(y+1))^{2}+(2-(y+1))^{2}+(4-(y+1))^{2}
$$

UV Decomposition: Incremental Computation

Minimize contribution from $y=V_{11}$ to sum of squares:

$$
(5-(2.6 y+1))^{2}+(3-(y+1))^{2}+(2-(y+1))^{2}+(2-(y+1))^{2}+(4-(y+1))^{2}
$$

which simplifies to

$$
(4-2.6 y)^{2}+(2-y)^{2}+(1-y)^{2}+(1-y)^{2}+(3-y)^{2}
$$

Take derivative and set to zero:

$$
-2 \times(2.6(4-2.6 y)+(2-y)+(1-y)+(1-y)+(3-y))=0
$$

from which we obtain $y=1.617$.

UV Decomposition: Incremental Computation

- \sum_{i} be shorthand for sum over all i such that $m_{u i}$ is not missing
- \sum_{u} be shorthand for sum over all u such that $m_{u i}$ is not missing
- $\sum_{j \neq k}$ shorthand for sum over all $j=1, \ldots, d$ except for $j=k$
- General formula for determining optimal $x=U_{u k}$:

$$
\begin{equation*}
x=\frac{\sum_{i} V_{k i}\left(M_{u i}-\sum_{j \neq k} U_{u j} V_{j i}\right)}{\sum_{i} V_{k i}^{2}} \tag{5}
\end{equation*}
$$

- General formula for determining optimal $y=V_{k i}$:

$$
\begin{equation*}
y=\frac{\sum_{u} U_{u k}\left(M_{u i}-\sum_{j \neq k} U_{u j} V_{j i}\right)}{\sum_{u} U_{u k}^{2}} \tag{6}
\end{equation*}
$$

Complete UV-Decomposition Algorithm

There are four issues to deal with:

1. Preprocessing M

- Normalize M; undo normalization when making predictions

2. Initializing U and V

- Let a be average across non-blank elements of M
- Choose $\sqrt{a / d}$ for each entry of U and V
- Perturb value $\sqrt{a / d}$ randomly and independently for varying initialization

3. Determine order in which to optimize elements of U, V

- Do row-by-row or column-by-column
- Choose entries randomly

4. Convergence? Stop the iteration.

- Stop when improvements in RMSE become negligible

Materials / Outlook

- See Mining of Massive Datasets, chapter 9.1, 9.3, 9.4
- As usual, see http://www.mmds.org/ in general for further resources
- Next lecture: "Social Networks", sections 10.1, 10.2,"Web Advertisements: Intro": sections 8.1, 8.2, 8.3 in Mining of Massive Datasets

