Mining Data Streams II / Link Analysis I

Alexander Schönhuth

Bielefeld University
June 10, 2020

TODAY

Overview

- Mining Data Streams II
- Counting Ones in a Window: Datar-Gionis-Indyk-Motwani algorithm
- Link Analysis I
- PageRank: Introduction, Definition
- PageRank: Dead Ends and Spider Traps

Learning Goals: Understand these topics and get familiarized

Counting Ones in a Window
 The Datar-Gionis-Indyk-Motwani Algorithm

Data Stream Management System

A data stream management system
Adopted from mmds.org

Data Stream Queries

Issues

- Streams deliver elements rapidly: need to act quickly
- Thus, data to work on should fit in main memory
- New techniques required:

Compute approximate, not exact answers
Hashing is a useful technique

Counting Ones in Window: Problem

- Situation:
- Suppose we have a window of length N on a binary stream
- Query: "how many ones are there in the last $k \leq N$ bits?"
- We cannot afford to store entire window
- Approximate algorithms required
- Present solution for binary streams first
- Discuss extension for summing numbers (from a stream of numbers) thereafter

The Cost of Exact Counts

- One needs to store N bits to answer count-one-queries for arbitrary $k \leq N$:
- Assume one could use less than N bits
- We need 2^{N} different representations to represent all possible 2^{N} bit strings of length N
- Since we use less than N bits, there are two different bit strings $w \neq x$, for which we use the same representation
- Let k be the first bit from the right where w and x disagree
- Example:
- For $w=0101, x=1010$, we have $k=1$
- For $w=1001, x=0101$, we have $k=3$
- So the counts of ones in the window of length k for w and x differ
- But because we use identical representations for w and x, we will output the same count
- This proves that one needs the full N bits to represent bit strings for exact count-one-queries.

The Datar-Gionis-Indyk-Motwani Algorithm

- Situation:
- We consider a binary stream: elements are bits
- Let each element of the stream have a timestamp
- The first, leftmost element has timestamp 1, the second leftmost has timestamp 2, and so on
- Goal: We like to count the ones among the N most recent (rightmost) elements/bits
- Space requirements:
- Storing timestamps modulo N, and
- marking rightmost timestamp as most recent
- allows to store positions of individual bits using $\log _{2} N$ bits

The Datar-Gionis-Indyk-Motwani Algorithm

- Algorithm: Divide window into buckets, contiguous bit substrings
- Bucket Representation: For identifying buckets, we store
- The timestamp of its right end, and
- The size of the bucket, as the number of 1's in the bucket
- The size is supposed to be a power of 2
- Bucket Space Requirements:
- Timestamp requires $\log _{2} N$ bits
- Size is 2^{j}, hence requires $\log \log _{2} N$ bits (by storing $\log _{2} j$ bits)
- Requires $O(\log N)$ bits overall

Datar-Gionis-Indyk-Motwani Rules

Bit stream divided into buckets following DGIM rules From mmds.org

- Right end always is a 1
- Every 1 of the window is in some bucket
- Buckets do not overlap
- All sizes must be a power of 2
- For each possible size, there are either one or two buckets
- Size of buckets cannot decrease when moving

The Datar-Gionis-Indyk-Motwani Algorithm

Key Ideas / Considerations

- The number of buckets representing a window must be small
- Estimate the number of 1's in the last k bits (for any k) with an error of no more than 50%
- How to maintain the DGIM Bucket Rules on new bits arriving?

The Datar-Gionis-Indyk-Motwani Algorithm

Storage Requirements

- Each bucket can be represented using $O(\log N)$ bits
- Let 2^{j} be size of largest bucket: $2^{j}<N$ implies $j \leq \log _{2} N$
- So there are at most 2 buckets of sizes $2^{j}, j=\log _{2} N, \ldots, 1$
- This means that there are $O(\log N)$ buckets
- Each bucket being represented by $O(\log N)$ bits requires $O\left(\log ^{2} N\right)$ space overall

The Datar-Gionis-Indyk-Motwani Algorithm

Bit stream divided into buckets following DGIM rules

Answering Queries

- Let $1 \leq k \leq N$: how many 1 's are among the last k bits?
- Answer:
- Find leftmost (= with earliest timestamp) bucket b containing some of last k bits
- Estimate: Sum of sizes of buckets right of b plus half the size of b

The Datar-Gionis-Indyk-Motwani Algorithm

Bit stream divided into buckets following DGIM rules
From mmds.org

Example

- Let $k=10$: how many 1 's are among 0110010110 ?
- Let t be timestamp of rightmost bit
- Two buckets with one 1 each, having timestamps $t-1, t-2$ are fully included in k righmost bits
- Bucket of size 2 with timestamp $t-4$ is also included
- Bucket of size 4 with timestamp $t-8$ is only partially included

DGIM: ERror of Estimate

Bit stream divided into buckets following DGIM rules

> From mmds.org

Case 1: estimate is less than c

- Let c be true count; let leftmost bucket b be of size 2^{j}
- Worst case: all 1's in b are among k most recent bits
- So, estimate is lower by $1 / 2 \times 2^{j}=2^{j-1}$ than c
- Because $c \geq 2^{j}$, error is at most half of c

DGIM: ERROR OF ESTIMATE

Bit stream divided into buckets following DGIM rules
From mmds.org

Case 2: estimate is larger than c

- Let c be true count; let leftmost bucket b be of size 2^{j}
- Worst case: only rightmost bit of b is among k most recent bits, and
- There is only one bucket for each of sizes $2^{j-1}, \ldots, 1$
- That yields $c=1+2^{j-1}+\ldots+1=1+2^{j}-1=2^{j}$
- Estimate is $2^{j-1}+2^{j-1}+\ldots+1=2^{j-1}+2^{j}-1$, so
- Error $\frac{2^{j-1}+2^{j}-1}{2^{j}}$ is no greater than 50% of true count

Maintaining DGIM Rules

Upon a new bit with timestamp t having arrived:

- Check timestamp s of leftmost bucket b :
- if $s \leq t-N$, drop b from list of buckets
- If the new bit is 0 , do nothing
- If the new bit is 1 , do
- Create new bucket with timestamp t and size 1
- On increasing size, starting with size 1, while there are three buckets of the same size, do
- keep the rightmost bucket of that size as is
- join the two left buckets into one of double the size
- where the timestamp is that of the rightmost bit
- For example: joining the two left of the three buckets of size 1 into a bucket of size 2 may create a third bucket of size 2 , and so on
- Runtime: Need to look at $O(\log N)$ buckets, joining is constant time, so processing new bit requires $O(\log N)$ time overall

The Datar-Gionis-Indyk-Motwani Algorithm

Part VI

Bit stream divided into buckets following DGIM rules (top), with new 1 arriving (bottom)

From mmds.org

DGIM Algorithm: Reducing the Error

- For some $r>2$, allow either r or $r-1$ buckets of the same size
- Allow this for all but size 1 and largest size, whose numbers may be any of $1, \ldots, r$
- Compute estimate as before
- Extend maintaining the DGIM Bucket Rules in the obvious way
- Recall: largest error $\frac{2^{j-1}+2^{j}-1}{2^{j}}$ was made when only one 1 from leftmost bucket b was within window
- New error:
- True count is at most $1+(r-1)\left(2^{j-1}+\ldots+1\right)=1+(r-1)\left(2^{j}-1\right)$
- Estimate is $2^{j-1}-1+(r-1)\left(2^{j}-1\right)$, so fractional error is

$$
\frac{2^{j-1}-1}{1+(r-1)\left(2^{j}-1\right)}
$$

which is upper bounded by $1 / 2(r-1)$

- Picking large r can limit error to any $\epsilon>0$

DGIM Algorithm: Extensions

- DGIM can be extended to integers instead of bits
- Question is to estimate the sum of last $k \leq N$ integers from a window of N integers overall
- However, DGIM cannot be extended to streams containing negative integers
- Consider case of integers in range of 1 to 2^{m}, so represented by m bits
- Solution:
- Treat each bit of integers as separate stream
- Apply DGIM algorithm to each of m streams, yielding estimate c_{i} for i-th stream
- Overall estimate:

$$
\sum_{i=0}^{m-1} c_{i} 2^{i}
$$

- If error is at most ϵ for all i, overall error is also at $\operatorname{most} \epsilon$

PageRank
 Introduction

PageRank: Overview

- Motivation of PageRank definition: history of search engines
- Concept of random surfers foundation of PageRank's effectiveness
- Taxation ("recycling of random surfers") allows to deal with problematic web structures

History: Early Search Engines

- Early search engines
- Crawl the (entire) web
- List all terms encountered in an inverted index
- An inverted index is a data structure that, given a term, provides pointers to all places where term occurs
- On a search query (a list of terms)
- pages with those terms are extracted from the index
- ranked according to use of terms within pages
- E.g. the term appearing in the header renders page more important
- or the term appearing very often

TERM SpAM

- Spammers exploited this to their advantage
- Simple strategy:
- Add terms thousands of times to own webpages
- Terms can be made hidden by using background color
- So pages are listed in searches that do not relate to page contents
- Example: add term "movie" 1000 times to page that advertizes shirts
- Alternative strategy:
- Carry out web search on term
- Copy-paste highest ranked page into own page
- Upon new search on term, own page will be listed high up
- Corresponding techniques are referred to as term spam

PageRank's Motivation: Fighting Term Spam

IDEA:

- Simulate random web surfers
- They start at random pages
- They randomly follow web links leaving the page
- Iterate this procedure sufficiently many times
- Eventually, they gather at "important" pages
- Judge page also by contents of surrounding pages
- Difficult to add terms to pages not owned by spammer

PageRank's Motivation: Fighting Term Spam

JUSTIFICATION

- Ranking web pages by number of in-links does not work
- Spammers create "spam farms" of dummy pages all linking to one page
- But, spammers' pages do not have in-links from elsewhere

Random surfers do not wind up at spammers' pages

- (Non-spammer) page owners place links to pages they find helpful
- Random surfers indicate which pages are likely to visit Users are more likely to visit useful pages

PageRank: Definition

- PageRank is a function that assigns a real number to each (accessible) web page
- Intuition: The higher the PageRank, the more important the page
- There is not one fixed algorithm for computing PageRank
- There are many variations, each of which caters to particular issue

PageRank: Definition

- Consider the web as a directed graph
- Nodes are web pages
- Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- For example, a random surfer starts at node A
- Walks to B, C, D each with probability $1 / 3$
- So has probability 0 to be at A after first step

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- Random surfer at B, for example, in next step
- is at A, D each with probability $1 / 2$
- is at B, C with probability 0

Web Transition Matrix: Definition

Definition [Web Transition Matrix]:

- Let n be the number of pages in the web
- The transition matrix $M=\left(m_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ has n rows and columns
- For each $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, n\}$
- $m_{i j}=1 / k$, if page j has k arcs out, of which one leads to page i
- $m_{i j}=0$ otherwise

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Transition matrix for web from slides before

PageRank Function: Definition

Definition [PageRank Function]:

- Let n be the number of pages in the web
- Let $p_{i}^{t}, i=1, \ldots, n$ be the probability that the random surfer is at page i after t steps
- The PageRank function for $t \geq 0$ is defined to be the vector

$$
p^{t}=\left(p_{1}^{t}, p_{2}^{t}, \ldots, p_{n}^{t}\right) \in[0,1]^{n}
$$

PageRank Function: Interpretation

- Usually, $p^{0}=(1 / n, \ldots 1 / n)$ for each $i=1, \ldots, n$
- So before the first iteration, the random surfer is at each page with equal probability
- The probability to be at page i in step $t+1$ is the sum of probabilities to be at page j in step t times the probability to move from page j to i
- That is, $p_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} p_{j}^{t}$ for all i, t, or, in other words

$$
\begin{equation*}
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0 \tag{1}
\end{equation*}
$$

- So, applying the web transition matrix to a PageRank function yields another one

PageRank Function: Markov Processes

$$
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0
$$

- This relates to the theory of Markov processes
- Given that the web graph is strongly connected
- That is: one can reach any node from any other node
- In particular, there are no dead ends, nodes with no arcs out
- it is known that the surfer reaches a limiting distribution \bar{p}, characterized by

$$
\begin{equation*}
M \bar{p}=\bar{p} \tag{2}
\end{equation*}
$$

PageRank Function: Markov Processes

$$
M \bar{p}=\bar{p}
$$

- Further, because M is stochastic (= columns each add up to one)
- \bar{p} is the principal eigenvector, which is
- the eigenvector associated with the largest eigenvalue, which is one
- \bar{p}_{i} is the probability that the surfer is at page i after a long time
- Principal eigenvector of M expresses where the surfer will end up
- Reasoning: The greater \bar{p}_{i}, the more important page i

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- It holds that

$$
\begin{equation*}
M^{t} p^{0} \underset{t \rightarrow \infty}{\longrightarrow} \quad \bar{p} \tag{3}
\end{equation*}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence
- Example: Iterative application of transition matrix from above

$$
\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right],\left[\begin{array}{l}
9 / 24 \\
5 / 24 \\
5 / 24 \\
5 / 24
\end{array}\right],\left[\begin{array}{l}
15 / 48 \\
11 / 48 \\
11 / 48 \\
11 / 48
\end{array}\right],\left[\begin{array}{r}
11 / 32 \\
7 / 32 \\
7 / 32 \\
7 / 32
\end{array}\right], \ldots,\left[\begin{array}{l}
3 / 9 \\
2 / 9 \\
2 / 9 \\
2 / 9
\end{array}\right]
$$

Convergence to limiting distribution for four-node web graph

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- It holds that

$$
\begin{equation*}
M^{t} p_{0} \underset{t \rightarrow \infty}{\longrightarrow} \bar{p} \tag{4}
\end{equation*}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence
- In practice, working real web graphs
- 50-75 iterations do just fine
- For efficient computation, recall MapReduce based matrix-vector multiplication techniques

Materials / Outlook

- See Mining of Massive Datasets, chapter 4.6;5.1
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Link Analysis II"
- See Mining of Massive Datasets 5.2-5.5

