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WORKFLOW SYSTEMS: INTRODUCTION

I Workflow systems generalize MapReduce

I Just as much as MapReduce:
I They’re built on distributed file systems
I They orchestrate large numbers of tasks with only small input

provided by the user
I They automatically handle failures

I In addition:
I Single tasks can do other things than just Map or Reduce
I Tasks interact in more complex ways
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WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a→ b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks



WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a→ b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks



WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a→ b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks



WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a→ b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks



WORKFLOW SYSTEMS

Figure: More complex workflow than MapReduce

Adopted from mmds.org

mmds.org


WORKFLOW SYSTEMS: ACYCLIC FLOW GRAPH

I It is easier to deal with acyclic flow graphs
I This means that one cannot return to functions

I Blocking Property: tasks only generate output upon completion
I Blocking property easily applicable only in acyclic workflows

I Simple Example of Workflow: Cascades of Map-Reduce jobs
I Output of Map jobs generated only after all Map tasks are

completed
I Reduce can work only on complete output anyway
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POPULAR WORKFLOW SYSTEMS

I Spark: developed by UC Berkeley

I TensorFlow: Google’s system, primarily developed for neural
network computations

I Pregel: also by Google, for handling recursive (i.e. cyclic)
workflows

I Snakemake: easy-to-use workflow system, inspired by MakeFile
logic/functionality
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SPARK

I State-of-the-art workflow system:
I Very efficient with failures
I Very efficient in grouping tasks among nodes
I Very efficient in scheduling execution of functions

I Basic concept: Resilient Distributed Dataset (RDD)
I Generalizes key-value pair type of data: RDD is a file of objects of

one type
I Distributed: broken into chunks held at different nodes
I Resilient: recoverable from losses of (even all) chunks

I Transformations (steps of functions) turn RDD into others

I Actions turn other data (from surrounding file system) into
RDD’s and vice versa
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SPARK: TRANSFORMATIONS

Remark: For the following, consider equivalent methods in Python

I Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

I Turns one object into exactly another object, but not several ones
I Remember: Map from MapReduce generates several key-value

pairs from one object

I Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types (not implemented in
Python)

I Filter takes a predicate as input
I Predicate is true or false for elements of RDD
I So RDD is filtered for objects for which predicate applies
I Yields a ’filtered RDD’



SPARK: TRANSFORMATIONS

Remark: For the following, consider equivalent methods in Python

I Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

I Turns one object into exactly another object, but not several ones
I Remember: Map from MapReduce generates several key-value

pairs from one object

I Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types (not implemented in
Python)

I Filter takes a predicate as input
I Predicate is true or false for elements of RDD
I So RDD is filtered for objects for which predicate applies
I Yields a ’filtered RDD’



SPARK: TRANSFORMATIONS

Remark: For the following, consider equivalent methods in Python

I Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

I Turns one object into exactly another object, but not several ones
I Remember: Map from MapReduce generates several key-value

pairs from one object

I Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types (not implemented in
Python)

I Filter takes a predicate as input
I Predicate is true or false for elements of RDD
I So RDD is filtered for objects for which predicate applies
I Yields a ’filtered RDD’



SPARK: REDUCE AND RELATIONAL DATABASE

OPERATIONS

I Reduce is an action, and takes as parameter a function that
I applies to two elements of a particular type T
I returns one element of type T
I and is applied repeatedly until a single element remains
I Works for associative and commutative operations

I Many Relational Database Operations are implemented in Spark:
I Process RDD’s reflecting tuples of relations
I Examples: Join, GroupByKey
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SPARK: IMPLEMENTATION DETAILS

I Spark is similar like MapReduce in handling data (chunks are
called splits)

I Lazy evaluation allows to apply several transformations
consecutively to splits:

I No intermediate formation of entire RDD’s
I Contradicts blocking property, because partial output is passed on

to new functions

I Resilience (despite lazy evaluation) is maintained by lineages of
RDD’s

I Beneficial trade-off of more complex recovery of failures versus
greater speed overall

I Note that greater speed reduces probability of failures
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I Open-source system developed (initially) by Google for
machine-learning applications

I Programming interface for writing sequences of steps

I Data are tensors, which are multidimensional matrices

I Power comes from built-in operations applicable to tensors
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RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures needs to be reorganized



RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures needs to be reorganized



RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures needs to be reorganized



RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures needs to be reorganized



RECURSIVE WORKFLOWS: EXAMPLE

I Directed graph stored as relation E(X,Y), listing arcs from X to Y

I Want to compute relation P(X,Y), listing paths from X to Y

I P is transitive closure of E (see below)

I Algorithm:
I Start: P(X,Y) = E(X,Y)
I Iteration: Add to P tuples

πX,Y(P(X,Z) ./ P(Z,Y)) (1)

as pairs of nodes X and Y s.t. for some node Z there is path from X
to Z and from Z to Y
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TRANSITIVE CLOSURE: DEFINITION

DEFINITION [TRANSITIVE CLOSURE]:
Let R(X,Y) be a relation.

I R(X,Y) is transitive if (x, z) ∈ R and (z, y) ∈ R imply that
(x, y) ∈ R as well

I The transitive closure R(X,Y) of R(X,Y) is the smallest set of tuples
to be added to R(X,Y) that renders the resulting set of tuples
transitive



EXAMPLE: TRANSITIVE CLOSURE

I n Join tasks, corresponding to
buckets of hash function h

I Tuple P(a, b) is assigned to
Join tasks h(a) and h(b)

I i-th Join tasks receives P(a, b)
I Store P(a, b) locally
I If h(a) = i look for tuples

P(x, a) and produce P(x, b)
I If h(b) = i look for tuples

P(b, y) and produce P(a, y)

Transitive closure by recursive tasks
Adopted from mmds.org

mmds.org
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RECURSIVE WORKFLOWS: EXAMPLE

I m Dup-elim tasks,
corresponding to buckets of
hash function g

I P(c, d) (as output of Join task)
is sent to Dup-elim task
j = g(c, d)

I Dup-elim task j checks
whether P(c, d) was received
before

I If yes, P(c, d) is ignored
(and not stored)

I If not, P(c, d) is stored
locally,

I and sent to Join tasks h(c)
and h(d)
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RECURSIVE WORKFLOWS: EXAMPLE

I Every Join task has m output
files

I Every Dup-elim task has n
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I Initially, tuples E(a, b) are sent
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RECURSIVE WORKFLOWS: FAILURE HANDLING

I Iterated MapReduce: Application is repeated execution /
sequence of MapReduce job(s) (“HaLoop”)

I Spark Approach: Lazy evaluation, lineage mechanisms, option to
store intermediate results

I Bulk Synchronous Systems: Graph-based model using “periodic
checkpointing”



BULK SYNCHRONOUS SYSTEMS: PREGEL

I System views data as graph:
I Nodes (roughly) reflect tasks
I Arcs: from nodes whose output (messages) are input to other

nodes

I Supersteps:
I All messages received by any of the nodes from the previous

superstep are processed
I All messages generated are sent to their destinations

I Advantage: Sending messages means communication costs,
bundling them reduces costs

I Failure Management: Checkpointing entire computation by
making copy after each superstep

I May be beneficial to checkpoint periodically after number of
supersteps
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I Create reproducible and scalable data analyses

I Workflows described in human readable, Python based
language

I Seamlessly scale to server, cluster, grid and cloud environments

I Integrating descriptions of required software, deployable to any
execution environment
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The Communication-Cost Model



COMMUNICATION COST

Situation

I Algorithm implemented by acyclic network of tasks:
I Map tasks feeding Reduce tasks
I Cascade of several MapReduce jobs
I More general workflow structure (e.g. Fig. 1)

DEFINITION [COMMUNICATION COST]:

I The communication cost of a task is the size of the input it receives

I The communication cost of an algorithm is the sum of the
communication costs of its tasks



COMMUNICATION COST

Situation

I Algorithm implemented by acyclic network of tasks:
I Map tasks feeding Reduce tasks
I Cascade of several MapReduce jobs
I More general workflow structure (e.g. Fig. 1)

DEFINITION [COMMUNICATION COST]:

I The communication cost of a task is the size of the input it receives

I The communication cost of an algorithm is the sum of the
communication costs of its tasks



COMMUNICATION COST

Situation

I Algorithm implemented by acyclic network of tasks:
I Map tasks feeding Reduce tasks
I Cascade of several MapReduce jobs
I More general workflow structure (e.g. Fig. 1)

DEFINITION [COMMUNICATION COST]:

I The communication cost of a task is the size of the input it receives

I The communication cost of an algorithm is the sum of the
communication costs of its tasks



COMMUNICATION COST

Why Communication Cost?

I Computing communication cost is the way to measure the complexity
of distributed algorithm

I Neglect time necessary for tasks to execute

I Importance of communication cost:
I Tasks tend to be simple (often linear in size of input)
I Interconnect speed of compute cluster (typically 1 Gbit/sec) slow

compared with speed processors execute instructions
I Often there is competition for the interconnect when several nodes are

communicating
I Moving data from disk to memory may exceed runtime

Why not Output Size?

I Output often is input to another task anyway
I Output rarely large in comparison with input or intermediate data
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REMINDER: NATURAL JOIN

Natural Join: R(A,B) ./ S(B,C)

I Map: For each tuple t = (a, b) from R, generate key-value pair
(b, (R, a)). For each tuple (b, c) from S, generate (b, (S, c)).

I Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

I Construct all pairs of values where first component is like (R, a)
and second component is like (S, c), yielding triples
(b, (R, a), (S, c))

I Turn triples into triples (a, b, c) being output
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COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A,B) ./ S(B,C) with R,S of sizes r and s.

I Map: Chunks of files R,S are input to Map tasks
+ communication cost of Map is r + s (in practice mostly disk to
memory)

I Reduce: Input to Reduce tasks is all (r + s many) key-value pairs
generated by Map tasks
+ communication cost for Reduce is O(r + s)

I Output of Reduce could be much larger than O(r + s) (up to
O(rs)), depending on how many tuples are to be generated for
each key b



COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A,B) ./ S(B,C) with R,S of sizes r and s.

I Map: Chunks of files R,S are input to Map tasks
+ communication cost of Map is r + s (in practice mostly disk to
memory)

I Reduce: Input to Reduce tasks is all (r + s many) key-value pairs
generated by Map tasks
+ communication cost for Reduce is O(r + s)

I Output of Reduce could be much larger than O(r + s) (up to
O(rs)), depending on how many tuples are to be generated for
each key b



COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A,B) ./ S(B,C) with R,S of sizes r and s.

I Map: Chunks of files R,S are input to Map tasks
+ communication cost of Map is r + s (in practice mostly disk to
memory)

I Reduce: Input to Reduce tasks is all (r + s many) key-value pairs
generated by Map tasks
+ communication cost for Reduce is O(r + s)

I Output of Reduce could be much larger than O(r + s) (up to
O(rs)), depending on how many tuples are to be generated for
each key b



COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A,B) ./ S(B,C) with R,S of sizes r and s.

I Map: Chunks of files R,S are input to Map tasks
+ communication cost of Map is r + s (in practice mostly disk to
memory)

I Reduce: Input to Reduce tasks is all (r + s many) key-value pairs
generated by Map tasks
+ communication cost for Reduce is O(r + s)

I Output of Reduce could be much larger than O(r + s) (up to
O(rs)), depending on how many tuples are to be generated for
each key b



COMMUNICATION COST EXAMPLE: R(A,B) ./ S(B,C)

Let sizes of relations R and S be r and s.

Map

I Each chunk of the files holding R and S is fed to one task
+ Communication cost is r + s

I Nodes hold chunks already from file distribution step: no
internode communication, only disk-to-memory costs

I All Map tasks perform a simple transformation, so only
negligible computation cost

I Output about as large as input
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COMMUNICATION COST EXAMPLE: R(A,B) ./ S(B,C)

Let sizes of relations R and S be r and s.

Reduce

I Receives and divides input into tuples from R and S

I For each key, pairs each tuple from R with the ones from S

I Output size can vary: can be larger or smaller than O(r + s)
I Many different B-values: output is small
I Few B-values: output much larger

I Output large: computation cost could be much larger than
O(r + s)

I Often output is further subsequently aggregated at further
nodes
+ Communication cost greater than computation cost
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WALL-CLOCK TIME

DEFINITION [WALL-CLOCK TIME]:
The wall-clock time is defined to be the time for the entire parallel
algorithm to finish.

Example: Careless reasoning could make one assign all tasks to one
node, which minimizes communication cost. But the wall-clock time
is (likely to be) at its maximum.
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EXAMPLE: MULTIWAY JOIN

Consider computing R(A,B) ./ S(B,C) ./ T(C,D). For simplicity, let us
assume that

I the probability that an R- and and S-tuple agree on B
I the probability that an S- and a T-tuple agree on C

are equal. Let p be that probability.

Joining R and S first:
I Communication cost is O(r + s) (see before)
I Size of output is prs
I Hence joining R ./ S with T is O((r + s) + (t + prs))

Joining S and T first:
I yields O((s + t) + (r + pst)) by analogous considerations
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R(A,B) ./ S(B,C) ./ T(C,D) IN ONE MAPREDUCE

Let p be the probability that an R- and an S-tuple agree on B, matching the
probability for an S- and a T-tuple to agree on C.

I Hash B- and C-values, using functions h and g
I Let b and c be the number of buckets for h and g

I Let k be the number of Reducers; require that bc = k
I Each reducer corresponds to a pair of buckets
I Reducer corresponding to bucket pair (i, j) joins tuples

R(u, v), S(v,w),T(w, x) whenever h(v) = i, g(w) = j

I Hence Map tasks send R- and T-tuples to more than one reducer
I R-tuples R(u, v) go to all reducers (h(v), y)

+ goes to c reducers
I T-tuples T(w, x) go to all reducers (z, g(w))

+ goes to b reducers
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MULTIWAY JOIN: ONE MAPREDUCE II

Sixteen reducers for a 3-way join
Adopted from mmds.org

I h(v) = 2, g(w) = 1

I S-tuple S(v,w) goes to reducer for key (2, 1)

I R-tuple R(u, v) goes to reducers for keys (2, 0), ..., (2, 3)

I T-tuple T(w, x) goes to reducers for keys (0, 1), ..., (3, 1)

mmds.org
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MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Moving tuples to proper reducers is sum of
I s to send tuples S(v,w) to (h(v), g(w))
I rc to send tuples R(u, v) to (h(v), y) for each of the c possible

g(w) = y
I bt to send tuples T(w, x) to (z, g(w)) for each of the b possible

h(b) = z

I Additional (constant) cost r + s + t to make each tuple input to
one of the Map tasks (constant)
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MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Goal: Select b and c, subject to bc = k, to minimize s + cr + bt

I Using Lagrangian multiplier λ yields to solve for
I r− λb = 0
I t− λc = 0

I It follows that rt = λ2bc, that is rt = λ2k, yielding further λ =
√

rt
k

I So, minimum communication cost at c =
√

kt
r and b =

√
kr
t

I Substituting into s + cr + bt yields s + 2
√

krt

I Adding r + s + t yields r + 2s + t + 2
√

krt, which is usually
dominated by 2

√
krt
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MAPREDUCE: COMPLEXITY THEORY

Idea

I Reminder: A “reducer” is the execution of a Reduce task on a
single key and the associated value list

I Important considerations:
I Keep communication cost low
I Keep wall-clock time low
I Execute each reducer in main memory

I Intuition:
I The less communication, the less parallelism, so
I the more wall-clock time
I the more main memory needed

I Goal: Develop encompassing complexity theory
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REDUCER SIZE: INFORMAL EXPLANATION

Reducer size: maximum length of list [v,w,...] after grouping keys
Adopted from mmds.org

mmds.org


REDUCER SIZE

DEFINITION [REDUCER SIZE]:
The reducer size q is the upper bound on the number of values to
appear in the list of a single key.

Motivation

I Small reducer size forces to have many reducers

I Further creating many Reduce tasks implies high parallelism,
hence small wall-clock time

I Sufficiently small reducer size allows to have all data in main
memory
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REPLICATION RATE

DEFINITION [REPLICATION RATE]:
The replication rate r is the number of all key-value pairs generated by
Map tasks, divided by the number of inputs.

Motivating Example

I One-pass matrix multiplication algorithm:
I Matrices involved are n× n
I Reminder: Key-value pairs for MN are ((i, k), (M, j,mij)), j = 1, ..., n

and ((i, k), (N, j, njk)), j = 1, ..., n

I Replication rate r is equal to n:
I Inputs are all mij and njk
I For each mij, one generates key-value pairs for (i, k), k = 1, ..., n
I For each njk, one generates key-value pairs for (i, k), i = 1, ..., n

I Reducer size is 2n: for each key (i, k) there are n values from
each mij and n values from each njk
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EXAMPLE: SIMILARITY JOIN

Situation

I Given large set X of elements

I Given similarity measure s(x, y) for measuring similarity
between x, y ∈ X

I Measure is symmetric: s(x, y) = s(y, x)

I Output of the algorithm: all pairs x, y where s(x, y) ≥ t for
threshold t

I Exemplary input: 1 million images (i,Pi) where
I i is ID of image
I Pi is picture itself
I Each picture is 1MB
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EXAMPLE: SIMILARITY JOIN

MapReduce: Bad Idea

I Use keys (i, j) for pair of pictures (i,Pi), (j,Pj)

I Map: generates ((i, j), [Pi,Pj]) as input for
I Reduce: computes s(Pi,Pj) and decides whether s(Pi,Pj) ≥ t
I Reducer size q is small: 2 MB; expected to fit in main memory
I However, each picture makes part of 999 999 key-value pairs, so

r = 999 999

I Hence, number of bytes communicated from Map to Reduce is

106 × 999 999× 106 = 1018

that is one exabyte

,
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EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Group images into g groups, each of 106/g pictures

I Map: For each (i,Pi) generate g− 1 key-value pairs
I Let u be group of Pi
I Let v be one of the other groups
I Keys are sets {u, v} (set, so no order!)
I Value is (i,Pi)
I Overall: ({u, v}, (i,Pi)) as key-value pair

I Reduce: Consider key {u, v}
I Associated value list has 2× 106

g values
I Consider (i,Pi) and (j,Pj) when i, j are from different groups
I Compute s(Pi,Pj)
I Compute s(Pi,Pj) for Pi,Pj from same group on processing keys
{u, u + 1}
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EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Replication rate is g− 1

I Each input element (i,Pi) is turned into g− 1 key-value
pairs

I Reducer size is 2× 106

g

I Number of values on list for reducer
I This yields 2× 106

g × 106 bytes stored at Reducer node
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EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Example g = 1000:
I Input is 2 GB, fits into main memory
I Communication cost:

(103 × 999)︸ ︷︷ ︸
number of reducers

× (2× 103 × 106)︸ ︷︷ ︸
reducer size

≈ 1015 (2)

I 1000 times less than brute-force
I Half a million reducers: maximum parallelism at Reduce nodes

I Computation cost is independent of g
I Always all-vs-all comparison of pictures
I Computing s(Pi,Pj) for all i, j
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MAPREDUCE: GRAPH MODEL

Goal: Proving lower bounds on replication rate as function of
reducer size, for many problems. Therefore:

Graph Model:

I Graph describes how outputs depend on inputs

I Reducers operate independently: each output has one reducer
that receives all input required to compute output

I Model foundation:
I There is a set of inputs
I There is a set of outputs
I Outputs depends on inputs: many-to-many relationship
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MAPREDUCE: GRAPH MODEL EXAMPLE

Graph for similarity join with four pictures
Adopted from mmds.org

mmds.org


MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION

Graph Model Matrix Multiplication

I Multiplying n× n matrices M and N makes
I 2n2 inputs mij, njk, 1 ≤ i, j, k ≤ n
I n2 outputs pik := (MN)ik, 1 ≤ i, k ≤ n

I Each output pik needs 2n inputs mi1,mi2, ...,min and n1k,n2k, ...,nnk

I Each input relates to n outputs: e.g. mij to pi1, pi2, ..., pin
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MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION II

Input-output relationship graph for multiplying 2x2 matrices

Adopted from mmds.org

mmds.org


MAPREDUCE: MAPPING SCHEMAS

A mapping schema with a given reducer size q is an assignment of
inputs to reducers such that

I No reducer receives more than q inputs

I For every output, there is a reducer that receives all inputs
required to generate the output

Consideration: The existence of a mapping schema for a given q
distinguishes problems that can be solved in a single MapReduce job
from those that cannot.
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MAPPING SCHEMA: EXAMPLE

Consider computing similarity of p pictures, divided into g groups.

I Number of outputs:
(p

2

)
=

p(p−1)
2 ≈ p2

2

I Reducer receives 2p/g inputs
+ necessary reducer size is q = 2p/g

I Replication rate is r = g− 1 ≈ g:

r = 2p/q

+ r inversely proportional to q which is common

I In a mapping schema for reducer size q:
I Each reducer is assigned exactly 2p/g inputs
I In all cases, every output is covered by some reducer
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MAPPING SCHEMAS: NOT ALL INPUTS PRESENT

Example: Natural Join R(A,B) ./ S(B,C), where many possible tuples
R(a, b),S(b, c) are missing.

I Theoretically q = |A| · |C| (keys were b ∈ B)

I But in practice many tuples (a, b), (b, c) are missing for each b, so
q possibly much smaller than |A| · |C|

Main Consideration: One can increase q because of the missing inputs,
without that inputs do no longer fit into main memory in practice
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MAPPING SCHEMAS: LOWER BOUNDS ON

REPLICATION RATE

Technique for proving lower bounds on replication rates

1. Prove upper bound g(q) on how many outputs a reducer with q
inputs can cover
+ This may be difficult in some cases

2. Determine total number of outputs O

3. Let there be k reducers with qi < q, i = 1, ..., k inputs
+ observe that

∑k
i=1 g(qi) needs to be no less than O

4. Manipulate the inequality
∑k

i=1 g(qi) ≥ O to get a lower bound
on
∑k

i=1 qi

5. Dividing the lower bound on
∑k

i=1 qi by number of inputs is
lower bound on replication rate
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LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Recall that r ≤ 2p/q was upper bound on replication rate for
all-pairs problem

I Here: Lower bound on r that is half the upper bound



LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Steps from slide before:
I Step 1: reducer with q inputs cannot cover more than

(q
2

)
≈ q2/2

outputs
I Step 2: overall

(p
2

)
≈ p2/2 outputs must be covered

I Step 3: So, the inequality approximately evaluates as

k∑
i=1

q2
i /2 ≥ p2/2 ⇐⇒

k∑
i=1

q2
i ≥ p2

I Step 4: From q ≥ qi, we obtain

q
k∑

i=1

qi ≥ p2 ⇐⇒
k∑

i=1

qi ≥
p2

q

I Step 5: Noting that r = (
∑k

i=1 qi)/p, we obtain

r ≥ p
q

which is half the size of upper bound
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MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 2.4–2.5

I For deepening your understanding, voluntary homework: please
read through 2.6.7

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “MapReduce / Workflow Systems III; Mining Data
Streams I”

I See Mining of Massive Datasets 2.6; 4.1–4.7

http://www.mmds.org/

