Link Analysis II

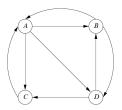
Alexander Schönhuth

Bielefeld University June 17, 2020

LEARNING GOALS TODAY

- ► PageRank Reality: Structure of the Web
- ► Topic-Sensitive PageRank: Classify Pages by Topics
- ► Link Spam and TrustRank: Fight Advanced Spammer Strategies
- ► Hubs and Authorities: Alternative, Non-PageRank Approach

PAGERANK: REMINDER



Hypothetical web with four pages

Adopted from mmds.org

$$M = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web from slides before

PAGERANK: REMINDER

- Let p^0 be a start distribution for a "random web surfer" over all web pages
 - ▶ If *n* is number of web pages, then usually $p^0 = (1/n, ..., 1/n) \in \mathbb{R}^n$
- ► Random steps of the surfer are reflected by repeated application of the web transition matrix *M* to the distribution over the pages of the surfer:

$$M^t p^0 \longrightarrow_{t \to \infty} \bar{p}$$

► The limiting distribution \bar{p} , for which $M\bar{p} = \bar{p}$, expresses the importance of web pages

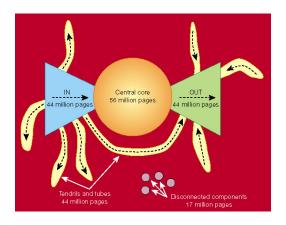
$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 9/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 15/48 \\ 11/48 \\ 11/48 \\ 11/48 \end{bmatrix}, \begin{bmatrix} 11/32 \\ 7/32 \\ 7/32 \\ 7/32 \end{bmatrix}, \dots, \begin{bmatrix} 3/9 \\ 2/9 \\ 2/9 \\ 2/9 \end{bmatrix}$$

Convergence to limiting distribution for four-node web graph

Adopted from mmds.org

PageRank Reality Dead Ends and Spider Traps

STRUCTURE OF THE WEB



Bowtie picture of the web

Adopted from mmds.org

WEB BOWTIE: SUMMARY

- Strongly connected component (SCC): core of the web
- ► *In-component (IC):*
 - One can reach SCC from IC
 - but not return to IC once left
- ► *Out-component (OC):*
 - Can be reached from SCC
 - but no longer be left
- ► Tendrils:
 - First type: reachable from IC, but can no longer be left
 - ► Second type: can reach OC, but cannot be returned to
- ► Tubes:
 - Can be reached from IC.
 - Can only reach OC
- Isolated components are not reachable from and cannot reach other components

BOWTIE AND MARKOV CHAINS

Issue: Limiting Distribution

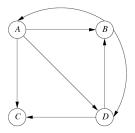
- ► Random surfers will inevitably wind up in out-component
- ► Limiting distribution has probability 0 on IC and SCC

№ No page in IC or SCC of importance

PageRank Modification

- ► Avoid *dead ends*, single pages with no outlinks
- Avoid spider traps, sets of pages without dead ends, but no arcs out
- ► Solution: Taxation
 - ► Assume random surfer has small probability to leave the web
 - ► Instead, new surfer starts at random node of the web

DEAD ENDS



Web graph with dead end (node C)

Adopted from mmds.org

- ightharpoonup Dead end = columns of all zeroes in the web transition matrix M
- ► *M* then is *substochastic* (= column sums at most 1)
- $ightharpoonup M^i v$ yields vector with zeroes for certain components
- ▶ Dead ends drain out the web

DEAD ENDS

$$M = \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web with dead end (node C)

Adopted from mmds.org

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48 \\ 7/48 \\ 7/48 \\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288 \\ 31/288 \\ 31/288 \\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

AVOIDING DEAD ENDS

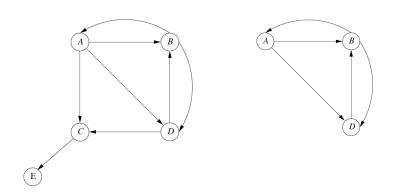
Dropping dead ends: Procedure

- ▶ Drop dead ends from graph, and corresponding edges
- ► Dropping dead ends may create more dead ends
- ► Keep dropping dead ends iteratively

Dropping dead ends: Consequences

- ► Removes parts of out-component, tendrils and tubes
- ► Leaves SCC and in-component

AVOIDING DEAD ENDS



Graph before (left) and after iterative removal of dead ends (right)

DROPPING DEAD ENDS: PAGERANK COMPUTATION

- 1. After iterative removal of dead ends, compute PageRank for remaining core nodes
- 2. Re-introduce nodes iteratively, in reverse order relative to their removal
- 3. PageRank for re-introduced node: sum over all predecessors, PageRank of predecessor *p* divided by the number of successors of *p*

DEAD ENDS

$$M = \left[\begin{array}{rrr} 0 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{array} \right]$$

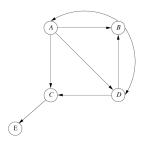
Transition matrix after removal of dead ends

$$\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} 1/6 \\ 3/6 \\ 2/6 \end{bmatrix}, \begin{bmatrix} 3/12 \\ 5/12 \\ 4/12 \end{bmatrix}, \begin{bmatrix} 5/24 \\ 11/24 \\ 8/24 \end{bmatrix}, \dots, \begin{bmatrix} 2/9 \\ 4/9 \\ 3/9 \end{bmatrix}$$

$$PageRank(A) = 2/9$$
, $PageRank(B) = 4/9$, $PageRank(D) = 3/9$

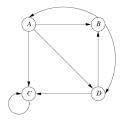
Adopted from mmds.org

DEAD ENDS: PAGERANK COMPUTATION



- 1. From core: PageRank(A) = 2/9, PageRank(B) = 4/9, PageRank(D) = 3/9
- 2. Re-introduce node C first: PageRank(C) = $1/3 \times \text{PageRank}(A) + 1/2 \times \text{PageRank}(D) = \frac{13}{54}$
- 3. Then re-introduce node E: PageRank(E) = 1 × PageRank(C) = $\frac{13}{54}$

SPIDER TRAPS



Web graph with spider trap (set containing single node C)

Adopted from mmds.org

- ► (Small) group of nodes with no dead ends, but no arcs out
- Can appear intentionally or unintentionally
- ► "Soak up" all PageRank

SPIDER TRAPS

$$M = \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 1 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Transition matrix for web with single node spider trap (third column)

Adopted from mmds.org

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24 \\ 5/24 \\ 11/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48 \\ 7/48 \\ 29/48 \\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288 \\ 31/288 \\ 205/288 \\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

SPIDER TRAPS: TAXATION

- ► Allow the random surfer to get *teleported* to a random page
- ► *Notation*:
 - ► Let *n* be the total number of web pages
 - ▶ Let $\mathbf{e} := (1, ..., 1)$ be the vector of length n with all entries one
 - Let β be a small constant; usually $0.8 \le \beta \le 0.9$
- ► *Taxation:* In each matrix-vector multiplication iteration, instead of just computing $\mathbf{v}' = M\mathbf{v}$, compute

$$\mathbf{v}' = \beta M \mathbf{v} + \frac{1}{n} (1 - \beta) \mathbf{e} = \beta M \mathbf{v} + (1 - \beta) (\frac{1}{n}, ..., \frac{1}{n})^T$$
 (1)

to obtain a new vector \mathbf{v}' from the actual one \mathbf{v}

SPIDER TRAPS: TAXATION

► *Taxation:* In each matrix-vector multiplication iteration, instead of just computing $\mathbf{v}' = M\mathbf{v}$, compute

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta)(\frac{1}{n}, ..., \frac{1}{n})^T$$

to obtain a new vector \mathbf{v}' from the actual one \mathbf{v}

- ► *Interpretation*:
 - With probability β , the surfer follows an out-link
 - With probability 1β , the surfer get teleported to a random page
 - ▶ In dead ends, surfer disappears with probability β
 - So if there are dead ends, sum of entries in v' less than one
 So remove dead ends first

SPIDER TRAPS

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 0 & 0\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 0 & 4/5 & 2/5\\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 1/20\\ 1/20\\ 1/20\\ 1/20 \end{bmatrix}$$

Iteration with taxation, with spider trap (third column)

Adopted from mmds.org

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 9/60 \\ 13/60 \\ 25/60 \\ 13/60 \end{bmatrix}, \begin{bmatrix} 41/300 \\ 53/300 \\ 153/300 \\ 53/300 \end{bmatrix}, \begin{bmatrix} 543/4500 \\ 707/4500 \\ 2543/4500 \\ 707/4500 \end{bmatrix}, \dots, \begin{bmatrix} 15/148 \\ 19/148 \\ 95/148 \\ 19/148 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

PAGERANK: EFFICIENT COMPUTATION

- ► PageRank virtually is matrix-vector multiplication
 - Consider MapReduce techniques (originally motivated by PageRank)
- ► *Caveats*, however:
 - ► Transition matrix *M* is very sparse; consider appropriate representation of *M*
 - ► To reduce communication cost, use combiners
 - Earlier striping technique not sufficient
- ► So, additional techniques necessary:

see https://mmds.org, section 5.2

Topic-Sensitive PageRank

TOPIC-SENSITIVE PAGERANK: MOTIVATION

- ▶ Different people have different interests, but ...
- ... different interests are expressed by identical terms
 - ► E.g. jaguar may refer to animal, automobile, operating system, game console
- ► *Ideally:* Each user has private PageRank vector that measures individual importance of pages
- But: It is not feasible to store a vector of length many billions for one billion users

TOPIC-SENSITIVE PAGERANK: BASIC IDEA

- ► Identify a (rather small) number of topics
- ► Compute topic specific PageRank vectors
 - ► Store topic vectors ...
 - ... instead of individual user vectors
 - ► There are much less topic vectors
 - ► Example for useful topics: See https://www.curlie.org/(new) or https://www.dmoz-odp.org for top-level categories
- ► Assign users to (weighted combination of) topic vectors
- ► *Drawback:* Looses accuracy
- ► *Benefit:* Saves massive amounts of space

TOPIC-SENSITIVE PAGERANK: COMPUTATION

Idea: Biased Random Walks

- Simulate random surfers that are to prefer pages adhering to particular topics
- Random surfers start at approved topic-specific pages only
- When surfing, they will preferably visit pages linked from topic-specific pages
- ► Such pages are likely to deal with topic as well
- When being re-introduced (to avoid dead ends, spider traps), surfers again start at approved pages

TOPIC-SENSITIVE PAGERANK: DEFINITION

- ► Let *S* be the *teleport set*, i.e. the pages that are approvedly topic-specific
- ▶ Let n, \mathbf{v} , \mathbf{v}' , M, β be as before
- ▶ Let $\mathbf{e}_S \in \{0,1\}^n$ be a bit vector of length n such that

$$\mathbf{e}_{S}[i] = \begin{cases} 1 & \text{if } i\text{-th page belongs to } S \\ 0 & \text{otherwise} \end{cases}$$
 (2)

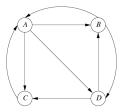
DEFINITION [TOPIC-SENSITIVE PAGERANK]

The *topic-sensitive PageRank for S* is the limit of the iteration

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta) \frac{\mathbf{e}_S}{|S|} \tag{3}$$

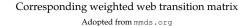


TOPIC-SENSITIVE PAGERANK: EXAMPLE



Example web graph
Adopted from mmds.org

$$\beta M = \begin{bmatrix} 0 & 2/5 & 4/5 & 0\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 2/5 & 0 & 0 \end{bmatrix}$$



TOPIC-SENSITIVE PAGERANK: EXAMPLE II

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 4/5 & 0\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 0 & 0 & 2/5\\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 0\\ 1/10\\ 0\\ 1/10 \end{bmatrix}$$

Topic sensitive PageRank computation iteration for teleport set {B,D}

Adopted from mmds.org

$$\begin{bmatrix} 0/2\\1/2\\0/2\\1/2 \end{bmatrix}, \begin{bmatrix} 2/10\\3/10\\2/10\\3/10 \end{bmatrix}, \begin{bmatrix} 42/150\\41/150\\26/150\\41/150 \end{bmatrix}, \begin{bmatrix} 62/250\\71/250\\46/250\\71/250 \end{bmatrix}, \dots, \begin{bmatrix} 54/210\\59/210\\38/210\\59/210 \end{bmatrix}$$

Corresponding limiting distribution

Adopted from mmds.org

TOPIC-SENSITIVE PAGERANK: PRACTICAL CONSIDERATIONS

- ► Pick an appropriate set of topics
- ► For each topic selected, determine teleport set
- ► Classifying documents by topic
 - ► Has been studied in great detail
 - Topics are characterized by words relating to topic
 - Such words appear surprisingly often in topic-specific pages
 - Determine such words from pages known to relate to topic beforehand
 - ► Remember the TF.IDF measure (first lecture)

TOPIC-SENSITIVE PAGERANK: PRACTICAL CONSIDERATIONS

- ▶ When confronted with search query, decide on related topics
- ► *Determining user-specific topics:*
 - ► Allow user to choose from menu
 - Infer topics from words appearing in recent queries
 - ► Infer topics from information on user (bookmarks, stated interests in social media,...)
- Use corresponding topic-sensitive PageRank vectors for ranking responses

Link Spam

LINK SPAM: INTRODUCTION

- ► Google rendered *term spam ineffective*
- Spammers developed *link spam* as a technique to artificially increase PageRank
- ► In the following, understand how to
 - create link spam
 - ▶ and how to fight it

SPAMMER VIEW OF WEB

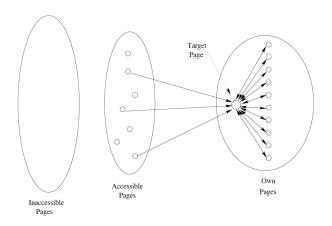
Types of pages

- ► *Inaccessible pages*: cannot be accessed by spammer; majority of pages
- ► *Accessible pages:* not owned, but can be accessed (manipulated)
 - Blogs, newspapers, forums allow leaving comments with links
- Own pages: owned and fully controlled by spammer

Spam farm

- ▶ Part of own pages with
 - ► *target page t*, for which maximum PageRank is to be achieved
 - ► *supporting pages m,* with links from and to *t*
- ▶ Note that without links from outside, spam farm would be useless

SPAMMER VIEW OF WEB



SPAM FARM: ANALYSIS

- ► Let there be *n* web pages overall
- ▶ Let $\beta \in [0.8, 0.9]$ be the taxed fraction of PageRank
- ► Let there be a spam farm with target page *t* and *m* supporting pages
- ▶ Let In(t) be all pages with a link to t; PR(p) be the PageRank for a page p; Out(p) be all successors of $p \in P$
- ► Let

$$x = \beta \sum_{p \in \text{In}(t)} \frac{\text{PR}(p)}{|\text{Out}(p)|}$$

be the PageRank provided to t by accessible pages

- ► Let y = PR(t) be the unknown PageRank of t
- ► The PageRank of each supporting page is

$$\beta \frac{y}{m} + \frac{(1-\beta)}{n}$$

where $\beta \frac{y}{m}$ is due to t and $\frac{(1-\beta)}{n}$ is due to random teleporting

SPAM FARM: ANALYSIS

- ► Let y = PR(t) be the unknown PageRank of t
- ► Let *x* be the PageRank provided to *t* by accessible pages
- ▶ Let $\beta \frac{y}{m} + \frac{(1-\beta)}{n}$ be the PageRank of each supporting page

Solving for y

1. We compute

$$y = x + \beta m \left(\frac{\beta y}{m} + \frac{1 - \beta}{n}\right) = x + \beta^2 y + \beta (1 - \beta) \frac{m}{n} \tag{4}$$

2. This yields

$$y = \frac{x}{1 - \beta^2} + c\frac{m}{n} \tag{5}$$

where
$$c = \beta(1 - \beta)/(1 - \beta^2) = \beta/(1 + \beta)$$

Example: $\beta = 0.85$, so $1/(1 - \beta^2) = 3.6$ and c = 0.46; spam farm has amplified external contribution to t by 360%; t also obtains 46% of the fraction m/n

COMBATING LINK SPAM

War on spam farms

- Search engines identify spam farm structures and eliminate pages from their index
- Spammers create alternative structures that raise PageRank of target pages
- Search engines in turn eliminate those structures, too
- ▶
- Endless war between search engines and spammers

Systematic approaches

- TrustRank: Variation on topic-sensitive PageRank to lower score of spam pages
- ► *Spam mass:* Calculation that identifies pages likely to be spam

 © Eliminate such pages or lower their PageRank substantially

TRUSTRANK

- ► *TrustRank* is like topic-sensitive PageRank where the "topic" are pages believed to be "trustworthy"
 - ► Inaccessible pages belong to the topic
 - Accessible pages like blogs or newspapers are only borderline trustworthy
- ► Choosing trustworthy pages:
 - 1. Human picked pages, or pages of highest PageRank (not achievable by link spam)
 - 2. Pick pages trustworthy by domain, such as .edu, .ac.uk, .gov and so on

SPAM MASS

DEFINITION [SPAM MASS]

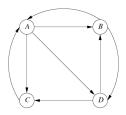
- ► For a page p, let r(p) and t(p) be its PageRank and its TrustRank
- ► The *spam mass* of *p* is defined to be

$$\frac{(r(p)-t(p))}{r(p)}$$

EXPLANATION

- ► Negative or small spam mass indicates that *p* is not spam
- ightharpoonup Spam mass close to 1 indicates that p is likely to be spam

SPAM MASS: EXAMPLE



Example web graph; B and D are trusted pages

Adopted from mmds.org

Node	PageRank	TrustRank	Spam Mass
A	3/9	54/210	0.229
B	2/9	59/210	-0.264
C	2/9	38/210	0.186
D	2/9	59/210	-0.264

Corresponding page rank, trust rank and spam mass
Adopted from mmds.org

Hubs and Authorities

HUBS AND AUTHORITIES: INTRODUCTION

- ► The hubs-and-authorities algorithm, also called *HITS* (*hyperlink-induced topic search*), is an alternative to PageRank
- ► Similarities:
 - Quantifies importance of pages
 - Involved fixedpoint computation by iterative matrix-vector multiplication
- ► *Differences*:
 - ► Divides pages into hubs and authorities
 - Not a preprocessing step: ranks importance of responses to query

HITS: INTUITION

- ► Importance is twofold
- Authorities are pages deemed to be valuable because they provide information on a topic
 - ► E.g. course website at university
- Hubs are pages deemed to be valuable because of providing directions about topics
 - ► E.g. department directory providing links to all course websites
- ► Mutually recursive definition:
 - ► Good hub links to good authorities
 - ► *Good authority* is linked to by good hubs

HUBBINESS AND AUTHORITY: DEFINITION

DEFINITION [HUBBINESS, AUTHORITY]

- ► Let the number of webpages be *n*
- ▶ Let $\mathbf{h} \in \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$ be two vectors where
 - ightharpoonup **h**_i quantifies the goodness of page *i* as a hub
 - ightharpoonup **a**_i quantifies the goodness of page *i* as an authority
- ▶ \mathbf{h}_i is also referred to as *hubbiness* of page i

REMARK

- ► Values of **h**, **a** are generally scaled such that
 - *either* the largest component is 1
 - *or* the sum of components is 1
 - ► In the following, first option will be used here

LINK MATRIX: DEFINITION

DEFINITION [LINK MATRIX]

- ► Let the number of webpages be *n*
- ▶ The *link matrix* $L \in \{0,1\}^{n \times n}$ of the Web is defined by

$$L_{ij} = \begin{cases} 1 & \text{there is a link from page } i \text{ to page } j \\ 0 & \text{otherwise} \end{cases}$$
 (6)

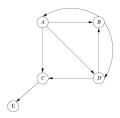
► Its transpose L^T is defined by $L_{ij}^T = L_{ji}$, that $L_{ij}^T = 1$ if there is a link from the j-th to the i-th page, and zero otherwise

REMARK

 $ightharpoonup L^T$ is similar to the PageRank web matrix M insofar as

$$L_{ij}^T \neq 0$$
 if and only if $M_{ij} \neq 0$

LINK MATRIX: EXAMPLE



Example web graph

Adopted from mmds.org

$$L = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad L^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Corresponding link matrix and its transpose

HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

► Good hub links to good authorities:

$$\mathbf{h}_i = \lambda \sum_{j=1}^n L_{ij} \mathbf{a}_j$$
 or, equivalently $\mathbf{h} = \lambda L \mathbf{a}$ (7)

where λ represents the necessary scaling of **h**

► Good authority is linked to by good hubs:

$$\mathbf{a}_i = \mu \sum_{j=1}^n L_{ij}^T \mathbf{h}_j$$
 or, equivalently $\mathbf{a} = \mu L^T \mathbf{h}$ (8)

where μ represents the necessary scaling of **a**.

HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

► Substituting (8) into (7) yields:

$$\mathbf{h} = \lambda \mu L L^T \mathbf{h} \tag{9}$$

► Substituting (7) into (8) yields:

$$\mathbf{a} = \mu \lambda L^T L \mathbf{a} \tag{10}$$

- ▶ h, a can be determined by solving linear equations
- ► However: LL^T , L^TL are not sufficiently sparse for their size to allow for solving corresponding linear equations
- ► Solution: HITS algorithm

THE HITS ALGORITHM

Initialization: Set $\mathbf{h}_i = 1$ for all i, that is $\mathbf{h} = (1, ..., 1)$ *Iteration:*

1. Compute

$$\mathbf{a} = L^T \mathbf{h}$$

- 2. Scale such that largest component of **a** is 1
- 3. Compute

$$\mathbf{h} = L\mathbf{a}$$

- 4. Scale such that largest component of **h** is 1
- 5. Repeat until convergence

HITS ALGORITHM: EXAMPLE

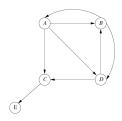
$$\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} & \begin{bmatrix} 1\\2\\2\\2\\1 \end{bmatrix} & \begin{bmatrix} 1/2\\1\\1\\1\\1/2 \end{bmatrix} & \begin{bmatrix} 3\\3/2\\1/2\\2\\2\\0 \end{bmatrix} & \begin{bmatrix} 1\\1/2\\1/6\\2/3\\0 \end{bmatrix} \\ \mathbf{h} & L^{\mathrm{T}}\mathbf{h} & \mathbf{a} & L\mathbf{a} & \mathbf{h} \\ \end{bmatrix}$$

$$\mathbf{h} & L^{\mathrm{T}}\mathbf{h} & \mathbf{a} & L\mathbf{a} & \mathbf{h} \\ \begin{bmatrix} 1/2\\1/6\\2/3\\0 \end{bmatrix} & \begin{bmatrix} 3/10\\2/3\\5/3\\5/3\\3/2\\1/6 \end{bmatrix} & \begin{bmatrix} 3/10\\1\\1\\9/10\\1/10 \end{bmatrix} & \begin{bmatrix} 29/10\\6/5\\1/10\\2\\0 \end{bmatrix} & \begin{bmatrix} 1\\12/29\\1/29\\20/29\\0 \end{bmatrix} \\ L^{\mathrm{T}}\mathbf{h} & \mathbf{a} & L\mathbf{a} & \mathbf{h} \\ \end{bmatrix}$$

First two iterations of HITS algorithm

Adopted from mmds.org

HITS ALGORITHM: EXAMPLE



$$\mathbf{h} = \begin{bmatrix} 1\\0.3583\\0\\0.7165\\0 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 0.2087\\1\\1\\0.7913\\0 \end{bmatrix}$$

Limits of h, a on graph Adopted from mmds.org

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 5.3–5.5
- ► As usual, see http://www.mmds.org/in general for further resources
- ► Next lecture: "Mining Frequent Itemsets"
 - ► See *Mining of Massive Datasets*, chapter 6.1, 6.2, 6.3.1, 6.4.1, 6.4.2

