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LEARNING GOALS TODAY

I None of today’s topics plays an explicit role in assignments/exercises
or the exam

I But they may reappear in other topics, and then play an implicit role

I Goal today is to get fundamental ideas about the following crucial
topics

e



Organizational
matters

What is Data
Mining?

Statistical Limits Useful Things
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LEARNING GOALS TODAY

I Organization:
I How do lectures, tutorials etc work
I What tools will be used

I What does Data Mining mean? What is the meaning of
I Statistical/Computational Modeling
I Summarization
I Feature Extraction

I What are Statistical Limits on Data Mining
I Bonferroni’s Principle

I Which are Useful Things to Know
I Word importance (example): the TD.IDF measure
I Hash functions
I Secondary storage and the effects on runtime
I The natural logarithm and important identities based on it
I Power laws
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PREREQUISITES, LECTURES, EXERCISES

I Course prerequisites: Databases I (Datenbanken I)

I Lectures: Thursdays, 10-12, via Zoom meetings as per links
provided

I Exercises: 5 assignments + 1 exam preparation session
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ASSIGNMENTS, EXAM

I Tutorials/Assignments:
I New exercise sheets provided on Thursdays April 22, May 6, May

27, June 10, June 24, July 15) after the lecture
I Exercises to be submitted by Tuesday, 23:59 twelve days

thereafter, discussion on Wednesday, Thursday same week
I Submission of exercises in groups of (approximately) 5 people
I Each group is supposed to present one exercise sheet in one of the

tutorials (ideal scenario)
I Upload to corresponding folder in the “Lernraum Plus”
I First exercise sheet uploaded on 22nd of April (next week)

I Exam:
I Likely online exam, planned for Thursday, July 29, 2021

10:00-12:00 (may be subject to changes due to situation; we will
communicate changes as timely as possible)

I Admitted: everyone exceeding 50% of total exercise points

e



TUTORIALS

I Every Wednesday, 16-18 and Thursday, 16-18
I 4 tutorials, 3 tutors: Maren Knop, Swen Simon and Harsha

Manjunath
I Assignment of people to the 4 tutorials via Lernraum Plus

(details will follow soon)
I One tutorial per day (Wednesday or Thursday) in English,

the other one in German (ideal scenario)
I Zoom meetings, link will be provided in time
I Presentation of individual solutions during the online

meeting, by groups of 2-3 people

e



COURSE MATERIAL

I . . . available on course website: https://gds.techfak.
uni-bielefeld.de/teaching/2021summer/bda
I Slides and pointers to literature
I Excercise sheets

I Lernraum Plus: https://lernraumplus.
uni-bielefeld.de/course/view.php?id=9839
I Submission of exercise solutions
I Self-managed forum

e

https://gds.techfak.uni-bielefeld.de/teaching/2021summer/bda
https://gds.techfak.uni-bielefeld.de/teaching/2021summer/bda
https://lernraumplus.uni-bielefeld.de/course/view.php?id=9839
https://lernraumplus.uni-bielefeld.de/course/view.php?id=9839


LITERATURE AND LINKS

I Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman
(2019). Mining of Massive Datasets. 3rd Edition, Cambridge
University Press.

I Download: http://infolab.stanford.edu/
˜ullman/mmds/book0n.pdf

I Materials: http://www.mmds.org/
I Other Books: See eKVV. For maximum consistency in online

times, other books less relevant.
I Further Links: To be provided during course.

e

http://infolab.stanford.edu/~ullman/mmds/book0n.pdf
http://infolab.stanford.edu/~ullman/mmds/book0n.pdf
http://www.mmds.org/


COURSE CURRICULUM

Part 1: Foundations
I Finding Similar Items I + II
I MapReduce / Workflow

Systems I + II
I Mining Data Streams I + II
I Mining Frequent Itemsets
I Clustering

Part 2: Applications
I Link Analysis (PageRank)

I + II
I Recommendation Systems
I Web Advertisements
I Social Networks
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THE 4 V’S OF BIG DATA

Provided by IBM Big Data & Analytics Hub
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THE 4 V’S OF BIG DATA: VOLUME

Provided by IBM Big Data & Analytics Hub e



THE 4 V’S OF BIG DATA: VELOCITY

Provided by IBM Big Data & Analytics Hub e



THE 4 V’S OF BIG DATA: VARIETY

Provided by IBM Big Data & Analytics Hub e



THE 4 V’S OF BIG DATA: VERACITY

Provided by IBM Big Data & Analytics Hub
e



DATA MINING – MEANING

I Data Mining (from 1990) is used interchangeably with
I Big Data (from 2010)
I Data Science (today)

I Data mining / Data Science / Big Data is about how to
I store big data
I manage big data
I analyze big data + THIS COURSE!
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DATA MINING – MODELING

I Often, data mining means to construct a map

f : Data→ S

where S is a set of useful labels, values, or similar, and
analyze this map.

I Such a map is a model.
I Example: Detection of phishing emails
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MODELING: EXAMPLE

I Consider a weighting scheme that assigns a real number
w(x) to words or phrases x

I The larger w(x) the more x is indicative of phishing emails
I For example, w(x) is large for x equal to “verify account”
I Consider the map f that maps emails E to real numbers

where
f (E) =

∑
x∈E

w(x)

that is, f sums up weights of all words/phrases in the
email E
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DATA MINING – STATISTICAL MODELING

I A statistical model of the data is a probability distribution that
describes the data.

I A generative model describes how the data is generated.
I Example:

I Data is a set of integers
I A statistical model may be a Gaussian distribution that fits

the empirical distribution
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STATISTICAL MODELING – BASIC EXAMPLE
SET OF NUMBERS

From stackoverflow.com:

I First fit a Gaussian to the empirical distribution of integers
I Mean and standard deviation sufficient for generating more numbers

+ generative model

e



MACHINE LEARNING

I Supervised Learning: Computationally infer model f from
data points x for which f (x) is known

I Unsupervised Learning: Computationally infer generative
statistical model P(x)

I Or: computationally infer combinations of the two
I Possible advantage: model highly accurate
I Possible disadvantage: model too complex to be explainable

+ deep learning
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MODELING: COMPUTATIONAL APPROACHES

I Provide probability distribution that reflects to have
generated the data (see above)

I Summarize all data succinctly and approximately
I Example: Compute the mean and standard deviation of

numerical data
I Extract only the most prominent features of the data, and

ignore the rest
I Consider patient data: keep only height, age, gender, and

blood pressure, and discard the rest
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SUMMARIZATION

Interesting Examples
I PageRank: Summarize each web page into one number

I PageRank computes the number of times a random “web
walker” hits a page; the more often, the more “important”

I PageRank indicates relevance of web page (relative to a
search)

I Clustering:
I Group data points, and choose a summarizing

representative for each group

e



CLUSTERING – EXAMPLE

From http://www.mmds.org.
Cholera cases on a map of London:

Clusters forming around contaminated wells
e

http://www.mmds.org


FEATURE EXTRACTION: FREQUENT ITEMSETS

I Model: “baskets” containing (relatively small) sets of items
I Example: super market. Baskets = shoppers, items = items

chosen for purchase.
I Frequent itemsets: Small groups of items re-appearing in

many baskets.
I Example: burgers and ketchup form a frequent itemset

consisting of two items.
I The set of frequent itemsets describes the “behaviour”

(characterizes) the data.
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FEATURE EXTRACTION: SIMILAR ITEMS

I Model: Data = collection of sets
I Similar items: Pairs of sets that are sufficiently similar.
I Example: Amazon buyers, mining similar items refers to

identifying shoppers that have purchased similar goods
I Used for recommending items to buyers; process is called

collaborative filtering

e
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DISCOVERING UNUSUAL EVENTS IN BIG DATA

I The more one searches, the more likely “unusual” events are
discovered

I Are they still unusual?

I Issue: When looking at too many things at a time, one discovers
things that are interesting, just because they are statistical
artifacts

I Example: Total Awareness Information
I American response to 9-11.
I Attempt to spot “unusual” (terrorist like) behaviour in credit-card

receipts, flight schedule records, hotel information, and so on.
I Vast majority of “terrorist like” behaviour spotted harmless

I Bonferroni’s principle deals with the corresponding limits
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BONFERRONI’S PRINCIPLE

I The number of unlikely events to occur randomly will
grow when data grows.

I So, when data is big, many “interesting” things may be
bogus, because they are statistical artifacts.

I Bonferroni’s principle computes the probability of unlikely
events to occur by chance.

e



BONFERRONI’S PRINCIPLE – EXAMPLE

Spot group of “evil-doers” who regularly meet in a hotel.

I There are one billion (109) people to be watched

I On average: random people stay in a hotel 1 out of 100 days

I On average: a hotel holds 100 people

I So we can deal with 100 000 hotels, because

100 000× 100 =
109

100

I Data: hotel records for 1000 days.
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BONFERRONI’S PRINCIPLE – EXAMPLE

I Definition of evil-doers:
Pairs meet in two different hotels on two different days

I Let us assume that there aren’t any evil-doers

I Question: What is the probability to spot a pair of “evil-doers”
although there aren’t any, just by random effects?
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RANDOM EVIL-DOERS: CALCULATION

I Probability that two randomly picked people visit a hotel on one
particular day:

0.01× 0.01 = 10−4

I Probability that they choose the same hotel:

1× 10−5 = 10−5

I Probability that two random people meet in the same hotel on
one day is:

10−4 × 10−5 = 10−9

I Probability that two random people meet in the same hotel on
two particular, different days is:

10−9 × 10−9 = 10−18

e
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BONFERRONI’S PRINCIPLE – EXAMPLE

I Probability that two random people meet in the same hotel on two
different days is

10−9 × 10−9 = 10−18

I Clearly the more people and the more days, the greater the chance that
two random people meet in the same hotel on the same day.

I Number of pairs of people and pairs of days is:(
109

2

)
= 5× 1017 and

(
1000

2

)
= 5× 105

I So, number of random(!) events that meet the definition of “evil-doing”
is

10−18 × (5× 1017)× (5× 105) = 250 000

I Summary: A quarter million pairs of people look like “doing evil” just
by chance
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USEFUL THINGS TO KNOW

I The TD.IDF measure of word importance
I Hash functions
I Secondary storage (disk) and running time of algorithms
I The natural logarithm
I Power laws

e



TD.IDF: INTRODUCTION

I Goal: Find words in documents (such as emails, news articles)
that are characteristic of the contents

I Example: in texts on the corona virus, you may see “corona”,
“virus”, “infection”, “cough”, “fever” more often than usual

I However: the most frequent words are likely to be “the” and
“and” (or the likes)

I So, words indicative of topics are rather rare.

e
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“and” (or the likes)

I So, words indicative of topics are rather rare.

I While, of course, there are also many rare words (such as
“albeit”, “notwithstanding” or similar) that are not indicative of
the topic, because rather generic.

I How to find words indicative of topics of interest?

I Compute the TF.IDF = Term Frequency times Inverse Document
Frequency!
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COMPUTING THE TF.IDF
I Compute the Term Frequency TFij

TFij =
fij

maxk fkj
(1)

where fij is the number of occurrences of word i in document j.
I Note: the most frequent term in document j gets a TF of 1.
I Compute the Inverse Document Frequency IDFi of i as

IDFi = log2(
N
ni
) (2)

where N is the number of documents overall, and ni is the number of
documents in which word i appears.

I So, ni ≤ N and IDFi ≥ 0
I TF.IDF for term i in document j is defined to be

TFij × IDFi (3)
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TF.IDF: EXPLANATIONS

I Terms with highest TF.IDF are often the terms that explain the
document best. Why?

I If a word i appears in all documents:

IDFi = log2(
N
ni
)

ni=N
= log2(1) = 0

so that word cannot be characteristic of any document
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I Consider document j in which w appears 20 times, which is the maximum
of appearances in one document:

TFwj =
20
20

= 1, so TF.IDFwj = 10

I Consider document k, in which w appears once:

TF.IDFwk =
1
2

e



TF.IDF: EXPLANATIONS

I Terms with highest TF.IDF are often the terms that explain the
document best. Why?

I Suppose we have 220 documents
I Suppose word w appears in 210 documents:

IDFw = log2(2
20/210) = log2(2

10) = 10

I Consider document j in which w appears 20 times, which is the maximum
of appearances in one document:

TFwj =
20
20

= 1, so TF.IDFwj = 10

I Consider document k, in which w appears once:

TF.IDFwk =
1
2

e



TF.IDF: EXPLANATIONS

I Terms with highest TF.IDF are often the terms that explain the
document best. Why?

I Suppose we have 220 documents
I Suppose word w appears in 210 documents:

IDFw = log2(2
20/210) = log2(2

10) = 10

I Consider document j in which w appears 20 times, which is the maximum
of appearances in one document:

TFwj =
20
20

= 1, so TF.IDFwj = 10

I Consider document k, in which w appears once:

TF.IDFwk =
1
2

e



TF.IDF: EXPLANATIONS

I Terms with highest TF.IDF are often the terms that explain the
document best. Why?

I Suppose we have 220 documents
I Suppose word w appears in 210 documents:

IDFw = log2(2
20/210) = log2(2

10) = 10

I Consider document j in which w appears 20 times, which is the maximum
of appearances in one document:

TFwj =
20
20

= 1, so TF.IDFwj = 10

I Consider document k, in which w appears once:

TF.IDFwk =
1
2

e



HASH FUNCTIONS

I A hash function takes a hash-key x as input and maps it to a bucket
number.

I The bucket number is a an integer in the range from 0 to B-1, where B is
the number of buckets.

I Example: Hash-keys are positive integers.

h(x) = x mod B

which is the remainder of x when dividing it by B. Often, B is a prime.
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HASH FUNCTIONS

I If hash-keys are not integers, they are often converted to integers.
I Example: if hash-keys are strings, one can map each character to its

ASCII code, and sum them up, before dividing them by B.
I If hash-keys have several components (such as arrays), convert each

component to integer, and sum them up.
I Let h(x) := x mod 5. Example:

h(”AB”) = h(ord(′A′) + ord(′B′)) = h(65 + 66) = h(131) = 1
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NUMBER OF KEYS VS NUMBER OF BUCKETS

I Usually, there are more than B hash-keys conceivable; but usually not
all of them are in use.

I If only less than B hash-keys are in use, with only little probability, hash
collisions

x1 6= x2 but h(x1) = h(x2)

happen to occur.
I If number of hash-keys is much larger than B, then hash functions

“randomize” keys, by distributing them (optimally) uniformly across
the whole range [0,B-1]

I That is more likely to happen when B is a prime

e



NUMBER OF KEYS VS NUMBER OF BUCKETS

I Usually, there are more than B hash-keys conceivable; but usually not
all of them are in use.

I If only less than B hash-keys are in use, with only little probability, hash
collisions

x1 6= x2 but h(x1) = h(x2)

happen to occur.
I If number of hash-keys is much larger than B, then hash functions

“randomize” keys, by distributing them (optimally) uniformly across
the whole range [0,B-1]

I That is more likely to happen when B is a prime

e



NUMBER OF KEYS VS NUMBER OF BUCKETS

I Usually, there are more than B hash-keys conceivable; but usually not
all of them are in use.

I If only less than B hash-keys are in use, with only little probability, hash
collisions

x1 6= x2 but h(x1) = h(x2)

happen to occur.
I If number of hash-keys is much larger than B, then hash functions

“randomize” keys, by distributing them (optimally) uniformly across
the whole range [0,B-1]

I That is more likely to happen when B is a prime

e



INDEXES

I Data structure that enables to retrieve all records specified by a
particular feature.

I Example: Consider an address book with entries (name, address, phone
number). We would like to retrieve all entries with a particular phone
number.

I One solution is to use a hash table:

Hash table used as index for retrieving address records based by their phone number
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SECONDARY STORAGE

I Important to keep in mind when dealing with big data: accessing data
from disks (hard drives) costs time (and energy).

I Disks are organized into blocks; e.g. blocks of 64K bytes.
I Takes approx. 10 milliseconds to access and read a disk block.
I About 105 times slower than accessing data in main memory.
I And taking a block to main memory costs more time than executing the

computations on the data when being in main memory.
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SECONDARY STORAGE

I One can alleviate problem by putting related data on a single cylinder,
where accessing all blocks on a cylinder costs considerably less time per
block.

I This establishes a limit of 100MB per second to transfer blocks to main
memory.

I If data is in the hundreds of gigabytes, let alone terabytes, this is an
issue.

I Integrate this knowledge into runtime considerations when dealing with big
data!
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THE NATURAL LOGARITHM I

I Euler constant:

e = lim
x→∞

(1 +
1
x
)x ≈ 2.71828 (4)

I Consider computing (1 + a)b where a is small:

(1 + a)b = (1 + a)(1/a)(ab) a=1/x
= (1 +

1
x
)x(ab) = ((1 +

1
x
)x)ab x large

≈ eab

I Consider computing (1− a)b where a is small:

(1− a)b = ((1− 1
x
)x)ab x large

≈ e−ab
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EULER CONSTANT: TAYLOR EXPANSION OF ex

I The Taylor expansion of ex is

ex =

∞∑
i=0

xi

i!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ ... (5)

I Convergence slow on large x, so not helpful.

I Convergence fast on small (positive and negative) x.

I Example: x = 1/2

e1/2 = 1 +
1
2
+

1
8
+

1
48

+
1

384
+ ... ≈ 1.64844

I Example: x = −1

e−1 = 1− 1 +
1
2
− 1

6
+

1
24
− 1

120
+

1
720
− 1

5040
... ≈ 0.36786
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POWER LAWS

I Consider two variables y and x and their functional
relationship.

I General form of a power law is

log y = b + a log x (6)

so a linear relationship between the logarithms of x and y.

e



POWER LAW: EXAMPLE

log10 y = 6− 2 log10 x

e



POWER LAWS

I Power law:
log y = b + a log x (7)

I Transforming yields:

y = eb · ea log x = eb · elog xa
= eb · xa

so power law expresses polynomial relationship y = cxa

e



REAL WORLD SCENARIOS

I Node degrees in web graph
I Nodes are web pages
I Nodes are linked when there are links between pages
I Order pages by numbers of links: number of links as a

function of the order number is power law

I Sales of products: y is the number of sales of the x-th most popular
item (books at amazon.com, say)

I Sizes of web sites: y is number of pages at the x-th largest web site

I Zipf’s Law: Order words in document by frequency, and let y be
the number of times the x-th word appears in the document.

I Zipf found the relationship to approximately reflect y = cx−1/2.
I Other relationships follow that law, too. For example, y is

population of x-th most populous (American) state.

I Summary: The Matthew Effect = “The rich get ever richer”
e
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MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 1

I See further http://www.mmds.org/ in general for further
resources

I Next lecture: “Finding Similar Items”

I See Mining of Massive Datasets 3.1–3.6
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