
Frequent Itemsets II

Alexander Schönhuth

Bielefeld University
July 22, 2021

TODAY

Overview
I Extensions of the A Priori Algorithm

I The Multihash Algorithm
I The Multistage Algorithm

I Limited Pass Algorithms
I Simple Randomized Algorithm
I Toivonen’s Algorithm

Learning Goals: Understand these topics and get familiarized

Mining Frequent Itemsets
Recap

FREQUENT ITEMSETS: OVERVIEW

Foundations

I There are items available in the market

I There are baskets, sets of items having been purchased together

I A frequent itemset is a set of items that is found to commonly
appear in many baskets

I The frequent-itemset problem is to identify frequent itemsets

FREQUENT ITEMSETS: DEFINITION

DEFINITION [FREQUENT ITEMSET]:

I Let s > 0 be a support threshold

I Let I be a set of items

I supp(I), the support of I, is the number of baskets in which I
appears as a subset

An itemset I is referred to as frequent if

supp(I) ≥ s (1)

that is, if the support of I is at least the support threshold

A Priori Algorithm
Recap

A-PRIORI ALGORITHM: CANDIDATE GENERATION

AND FILTERING

A-Priori algorithm: Alternating between candidate generation and filtering
Adopted from mmds.org

I Construct: Let Ck be all itemsets of size k, every k− 1 of which belong to
Lk−1

I E.g. C2 all pairs of items that are frequent themselves

I Filter: Make a pass through baskets to count members of Ck; those with
count exceeding s will be part of Lk

I Bottleneck: Size of C2, the candidate pairs

mmds.org

A-PRIORI GENERATING C2: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Adopted from mmds.org

mmds.org

A-Priori Algorithm Extensions

BOTTLENECK: SIZE OF C2

I The predominant bottleneck in most applications of A-Priori is
the size of C2, the candidate pairs

I Several algorithms address to trim down that size

I Treated PCY algorithm last time
I Additional criterion: frequent buckets

I Multistage and Multihash algorithm: today

PCY ALGORITHM: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Adopted from mmds.org

mmds.org

The Multistage Algorithm

THE MULTISTAGE ALGORITHM

I Particular Motivation: Selecting {i, j} to be in C2

I In PCY: even when reducing to frequent i and j, and {i, j}
hashing to frequent buckets, still too many pairs to be counted

I So, need to decrease size of C2 further

I Do this by introducing extra pass:
I The first pass is as before in PCY
I In the second pass, have another hash table that raises a third

condition
I In the third pass, count only pairs that fulfill all three conditions

THE MULTISTAGE ALGORITHM: SECOND PASS

I Second pass data structures from PCY:
I List A on item names to integers
I List C on frequent items: C[i] = k if item i is k-th frequent item,

and C[i] = 0 if i-th item is not frequent
I Bitmap H′: H′[{i, j}] = 1 iff item pair {i, j}mapped to frequent

bucket

I Extra data structure Multistage second pass:
I Hash table H2 that hashing pairs of items {i, j} to buckets holding

integers
H2[{i, j}] ∈ N

if:
I (*) both i and j are frequent
I (**) H′[{i, j}] = 1, that is {i, j} hashes to frequent bucket

THE MULTISTAGE ALGORITHM: SECOND PASS

I To construct H2, use double loop through baskets:
I hash each pair that meets (*) and (**) to bucket, and
I increase the integer in that bucket by one

I Again, a frequent bucket b in H2 exceeds the support threshold s

I Relative to number of frequent buckets using first H, the number
of frequent buckets in H2 should be much reduced, because
much less pairs are hashed

THE MULTISTAGE ALGORITHM

I Definition of Multistage C2: For {i, j} ∈ C2, both
I (*) i and j must be frequent
I (**) {i, j}must hash to a frequent bucket according to H
I (***) {i, j}must hash to a frequent bucket according to H2

I Use of C2 in third pass:
I Keep A (items to integers), C (frequent items), H′ (bitmap for H)
I Transform H2 into bitmap H′′ where

H′′[b] =

{
1 if H2[{i, j}] ≥ s
0 if H2[{i, j}] < s

(2)

where b is the bucket {i, j} hashes to by H2

THE MULTISTAGE ALGORITHM

I (Tricky?) Question: Why does (***) not imply (**) and (*)? Weren’t
all {i, j} hashed with H2 selected to hash to frequent bucket with
H and consist of frequent i and j?

I Answer:
I Yes: for the second part.
I But: Any {i, j} that does not consist of frequent i, j, or hash to

frequent bucket with H could hash to frequent bucket with H2

nevertheless, although not having contributed to count in the
bucket it hashes to

MULTISTAGE ALGORITHM: MAIN MEMORY USAGE

Use of main memory during Multistage passes
Adopted from mmds.org

mmds.org

The Multihash Algorithm

THE MULTIHASH ALGORITHM

I Particular Motivation: Try to profit from virtues of Multistage
algorithm in one, and not two passes

I So, in first pass, use two hash tables H1 and H2,

I Both H1 and H2 have only half as many buckets

I For proceeding with second pass, turn H1 and H2 into bitmaps
H′,H′′ as in Multistage

I Apply exact same conditions as in Multistage for pair {i, j} to be
counted

THE MULTIHASH ALGORITHM

I Both H1 and H2 have only half as many buckets

I That is like merging original buckets

I Applicability:
I Majority of buckets infrequent
I Average bucket size in PCY much lower than threshold s
I + Number of frequent buckets limited even when using half as

many buckets

THE MULTIHASH ALGORITHM: EXAMPLE

I Imagine average bucket count in PCY is s/10

I Number of pairs of items randomly hashing to frequent bucket
is 1/10

I So, with half as many buckets, average count in Multihash is s/5

I Number of pairs of items randomly hashing to frequent buckets
with both H1 and H2 is 1/25

I So, we deal with approximately 2.5 times less frequent pairs in
Multihash than in PCY

MULTIHASH ALGORITHM: MAIN MEMORY USAGE

Use of main memory during Multihash passes
Adopted from mmds.org

mmds.org

Limited-Pass Algorithms

LIMITED-PASS ALGORITHMS

Strategy

I To save on main memory, consider only a subsample of baskets

I Take into account that one may have
I False negatives: itemsets not identified as frequent although they are
I False positives: itemsets identified as frequent although they are not

I In many applications, a certain amount of false negatives and/or
positives is acceptable

Algorithms

I Simple Randomized Algorithm: basic strategy is briefly discussed
I Savasere, Omiecinski, Navate (SON): not considered in the following
I Toivonen: explained here

Simple Randomized Algorithm

SIMPLE RANDOMIZED ALGORITHM: STRATEGY

I Let m be the overall number of baskets

I Consider a situation where main memory can deal with only k
baskets

I Select probability p such that pm = k

I Run through basket file, and select each basket to be part of
sample with probability p

I If s is original support threshold, set s′ := sp for sample

I Run any A-Priori type algorithm on resulting subset of baskets
using s′ as support threshold

I Declare itemsets frequent in subsample as frequent overall

SIMPLE RANDOMIZED ALGORITHM: ERRORS

I False positive: Itemset that is frequent in sample, but not in the
whole

I False negative: Itemset that is frequent in the whole, but not in
sample

I Eliminating false positives: Running through whole dataset and
counting each itemset found to be frequent in the sample
eliminates false positives entirely

I Eliminating false negatives: Cannot eliminate false negatives
entirely, but reduce them by choosing s′ < sp, e.g. s′ = 0.9sp

Toivonen’s Algorithm

TOIVONEN’S ALGORITHM I

Algorithm

I Run simple sample strategy at s′ = 0.9ps or s′ = 0.8ps

I Construct all frequent itemsets from sampled baskets (at
support threshold s′)

I Subsequently, construct negative border of itemsets in sample

DEFINITION [NEGATIVE BORDER]:
An itemset I is in the negative border iff

I I is not frequent, so supp(I) < s′

I All I′ ⊂ I with |I′| = |I| − 1 are frequent, so supp(I′) ≥ s′

NEGATIVE BORDER

DEFINITION [NEGATIVE BORDER]:
An itemset I is in the negative border iff

I I is not frequent, so supp(I) < s′

I All I′ ⊂ I with |I′| = |I| − 1 are frequent, so supp(I′) ≥ s′

Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

NEGATIVE BORDER: EXAMPLE

I Consider items {A,B,C,D,E}
I Itemsets found to be frequent: {A}, {B}, {C}, {D}, {B,C}, {C,D}
I For formal reasons also the empty set ∅ is frequent

I Negative border:
I {E} not frequent, but ∅ is frequent
I {A,B}, {A,C}, {A,D}, {B,D}: not frequent, but singletons contained are
I No triples in negative border ({B,C,D} is not, because {B,D} is not

frequent)

TOIVONEN’S ALGORITHM II

I Pass through full dataset: Count all itemsets found to be frequent
or in the negative border in the sample

I Two possible outcomes:

1. No member of negative border is frequent in whole dataset:
correct set of itemsets frequent in the whole are the ones frequent
in the sample found to be frequent in the whole

2. Some member of negative border is frequent in whole dataset:
there could be even larger sets frequent in the whole
+ no guarantees, repeat the algorithm

TOIVONEN’S ALGORITHM: PROOF

I No false positives: all frequent itemsets were determined as
frequent in the whole dataset 3

I No false negatives: If no member of the negative border is
frequent in the whole dataset, we need to show that there is no
itemset that

I is frequent in the whole
I while, in the sample not among the frequent itemsets
I while, in the sample, not in the negative border

TOIVONEN’S ALGORITHM: PROOF

I Proof of no false negatives: Suppose the contrary. There is S
I frequent in the whole
I not frequent in the sample
I not in the negative border

I By monotonicity, all subsets of S are frequent in the whole

I Choose T ⊆ S of the smallest possible size such that still T is not
frequent in the sample

Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

TOIVONEN’S ALGORITHM: PROOF

I Claim: T is in the negative border of the sample

I Proof of Claim:
I All proper subsets of T are frequent in the sample, because T was

chosen of the smallest possible size
I T itself is not frequent in the sample

I We obtain that T was in the negative border of the sample, but
frequent in the whole, which is a contradiction!

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, 6.3.2, 6.3.3, 6.4.1, 6.4.2, 6.4.5, 6.4.6

I As usual, see http://www.mmds.org/ in general for further
resources

http://www.mmds.org/

