# Frequent Itemsets II 

Alexander Schönhuth

## Bielefeld University July 22, 2021

## TODAY

Overview

- Extensions of the A Priori Algorithm
- The Multihash Algorithm
- The Multistage Algorithm
- Limited Pass Algorithms
- Simple Randomized Algorithm
- Toivonen's Algorithm

Learning Goals: Understand these topics and get familiarized

## Mining Frequent Itemsets Recap

## Frequent Itemsets: Overview

Foundations

- There are items available in the market
- There are baskets, sets of items having been purchased together
- A frequent itemset is a set of items that is found to commonly appear in many baskets
- The frequent-itemset problem is to identify frequent itemsets


## Frequent Itemsets: Definition

Definition [FREQUENT ITEMSET]:

- Let $s>0$ be a support threshold
- Let I be a set of items
- $\operatorname{supp}(I)$, the support of $I$, is the number of baskets in which $I$ appears as a subset

An itemset $I$ is referred to as frequent if

$$
\begin{equation*}
\operatorname{supp}(I) \geq s \tag{1}
\end{equation*}
$$

that is, if the support of $I$ is at least the support threshold

## A Priori Algorithm Recap

## A-Priori Algorithm: Candidate Generation and Filtering



A-Priori algorithm: Alternating between candidate generation and filtering

> Adopted from mmds.org

- Construct: Let $C_{k}$ be all itemsets of size $k$, every $k-1$ of which belong to $L_{k-1}$
- E.g. $C_{2}$ all pairs of items that are frequent themselves
- Filter: Make a pass through baskets to count members of $C_{k}$; those with count exceeding $s$ will be part of $L_{k}$
- Bottleneck: Size of $C_{2}$, the candidate pairs


## A-Priori Generating $C_{2}$ : Main Memory Usage



Use of main memory during A-Priori passes
Adopted from mmds.org

## A-Priori Algorithm Extensions

## Bottleneck: Size of $C_{2}$

- The predominant bottleneck in most applications of A-Priori is the size of $C_{2}$, the candidate pairs
- Several algorithms address to trim down that size
- Treated PCY algorithm last time
- Additional criterion: frequent buckets
- Multistage and Multihash algorithm: today


## PCY Algorithm: Main Memory Usage



Pass 1


Pass 2

Use of main memory during A-Priori passes

## The Multistage Algorithm

## The Multistage Algorithm

- Particular Motivation: Selecting $\{i, j\}$ to be in $C_{2}$
- In PCY: even when reducing to frequent $i$ and $j$, and $\{i, j\}$ hashing to frequent buckets, still too many pairs to be counted
- So, need to decrease size of $C_{2}$ further
- Do this by introducing extra pass:
- The first pass is as before in PCY
- In the second pass, have another hash table that raises a third condition
- In the third pass, count only pairs that fulfill all three conditions


## The Multistage Algorithm: Second Pass

- Second pass data structures from PCY:
- List $A$ on item names to integers
- List $C$ on frequent items: $C[i]=k$ if item $i$ is $k$-th frequent item, and $C[i]=0$ if $i$-th item is not frequent
- Bitmap $H^{\prime}: H^{\prime}[\{i, j\}]=1$ iff item pair $\{i, j\}$ mapped to frequent bucket
- Extra data structure Multistage second pass:
- Hash table $H_{2}$ that hashing pairs of items $\{i, j\}$ to buckets holding integers

$$
H_{2}[\{i, j\}] \in \mathbb{N}
$$

if:

- (*) both $i$ and $j$ are frequent
- $\left({ }^{* *}\right) H^{\prime}[\{i, j\}]=1$, that is $\{i, j\}$ hashes to frequent bucket


## The Multistage Algorithm: Second Pass

- To construct $H_{2}$, use double loop through baskets:
- hash each pair that meets $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ to bucket, and
- increase the integer in that bucket by one
- Again, a frequent bucket $b$ in $H_{2}$ exceeds the support threshold $s$
- Relative to number of frequent buckets using first $H$, the number of frequent buckets in $\mathrm{H}_{2}$ should be much reduced, because much less pairs are hashed


## The Multistage Algorithm

- Definition of Multistage $C_{2}$ : For $\{i, j\} \in C_{2}$, both
- ( ${ }^{*}$ ) $i$ and $j$ must be frequent
- $\left({ }^{* *}\right)\{i, j\}$ must hash to a frequent bucket according to $H$
- $\left.{ }^{* * *}\right)\{i, j\}$ must hash to a frequent bucket according to $\mathrm{H}_{2}$
- Use of $C_{2}$ in third pass:
- Keep $A$ (items to integers), $C$ (frequent items), $H^{\prime}$ (bitmap for $H$ )
- Transform $\mathrm{H}_{2}$ into bitmap $\mathrm{H}^{\prime \prime}$ where

$$
H^{\prime \prime}[b]= \begin{cases}1 & \text { if } H_{2}[\{i, j\}] \geq s  \tag{2}\\ 0 & \text { if } H_{2}[\{i, j\}]<s\end{cases}
$$

where $b$ is the bucket $\{i, j\}$ hashes to by $\mathrm{H}_{2}$

## The Multistage Algorithm

- (Tricky?) Question: Why does (***) not imply (**) and (*)? Weren't all $\{i, j\}$ hashed with $H_{2}$ selected to hash to frequent bucket with $H$ and consist of frequent $i$ and $j$ ?
- Answer:
- Yes: for the second part.
- But: Any $\{i, j\}$ that does not consist of frequent $i, j$, or hash to frequent bucket with $H$ could hash to frequent bucket with $\mathrm{H}_{2}$ nevertheless, although not having contributed to count in the bucket it hashes to


## Multistage Algorithm: Main Memory Usage



Pass 1


Pass 2


Pass 3

Use of main memory during Multistage passes

> Adopted from mmds.org

## The Multihash Algorithm

## The Multihash Algorithm

- Particular Motivation: Try to profit from virtues of Multistage algorithm in one, and not two passes
- So, in first pass, use two hash tables $H_{1}$ and $H_{2}$,
- Both $H_{1}$ and $H_{2}$ have only half as many buckets
- For proceeding with second pass, turn $H_{1}$ and $H_{2}$ into bitmaps $H^{\prime}, H^{\prime \prime}$ as in Multistage
- Apply exact same conditions as in Multistage for pair $\{i, j\}$ to be counted


## The Multihash Algorithm

- Both $H_{1}$ and $H_{2}$ have only half as many buckets
- That is like merging original buckets
- Applicability:
- Majority of buckets infrequent
- Average bucket size in PCY much lower than threshold $s$
- Number of frequent buckets limited even when using half as many buckets


## The Multihash Algorithm: Example

- Imagine average bucket count in PCY is $s / 10$
- Number of pairs of items randomly hashing to frequent bucket is $1 / 10$
- So, with half as many buckets, average count in Multihash is $s / 5$
- Number of pairs of items randomly hashing to frequent buckets with both $H_{1}$ and $H_{2}$ is $1 / 25$
- So, we deal with approximately 2.5 times less frequent pairs in Multihash than in PCY


## Multihash Algorithm: Main Memory Usage



Pass 1

| Item <br> names <br> to <br> integers 1 <br> 2 <br> Fre- <br> quent <br> items  <br> Bitmap 1 Bitmap 2 <br> Data structure <br> for counts <br> of pairs  |
| :--- | :--- | :--- |

Pass 2

Use of main memory during Multihash passes
Adopted from mmds.org

## Limited-Pass Algorithms

## Limited-Pass Algorithms

Strategy

- To save on main memory, consider only a subsample of baskets
- Take into account that one may have
- False negatives: itemsets not identified as frequent although they are
- False positives: itemsets identified as frequent although they are not
- In many applications, a certain amount of false negatives and/or positives is acceptable

Algorithms

- Simple Randomized Algorithm: basic strategy is briefly discussed
- Savasere, Omiecinski, Navate (SON): not considered in the following
- Toivonen: explained here


## Simple Randomized Algorithm

## Simple Randomized Algorithm: Strategy

- Let $m$ be the overall number of baskets
- Consider a situation where main memory can deal with only $k$ baskets
- Select probability $p$ such that $p m=k$
- Run through basket file, and select each basket to be part of sample with probability $p$
- If $s$ is original support threshold, set $s^{\prime}:=s p$ for sample
- Run any A-Priori type algorithm on resulting subset of baskets using $s^{\prime}$ as support threshold
- Declare itemsets frequent in subsample as frequent overall


## Simple Randomized Algorithm: Errors

- False positive: Itemset that is frequent in sample, but not in the whole
- False negative: Itemset that is frequent in the whole, but not in sample
- Eliminating false positives: Running through whole dataset and counting each itemset found to be frequent in the sample eliminates false positives entirely
- Eliminating false negatives: Cannot eliminate false negatives entirely, but reduce them by choosing $s^{\prime}<s p$, e.g. $s^{\prime}=0.9 s p$


## Toivonen's Algorithm

## Toivonen's Algorithm I

Algorithm

- Run simple sample strategy at $s^{\prime}=0.9 p s$ or $s^{\prime}=0.8 p s$
- Construct all frequent itemsets from sampled baskets (at support threshold $s^{\prime}$ )
- Subsequently, construct negative border of itemsets in sample

Definition [Negative Border]:
An itemset $I$ is in the negative border iff

- I is not frequent, so $\operatorname{supp}(I)<s^{\prime}$
- All $I^{\prime} \subset I$ with $\left|I^{\prime}\right|=|I|-1$ are frequent, so $\operatorname{supp}\left(I^{\prime}\right) \geq s^{\prime}$


## Negative Border

## Definition [Negative Border]:

An itemset $I$ is in the negative border iff

- $I$ is not frequent, so $\operatorname{supp}(I)<s^{\prime}$
- All $I^{\prime} \subset I$ with $\left|I^{\prime}\right|=|I|-1$ are frequent, $\operatorname{sosupp}\left(I^{\prime}\right) \geq s^{\prime}$


Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

## Negative Border: Example

- Consider items $\{A, B, C, D, E\}$
- Itemsets found to be frequent: $\{A\},\{B\},\{C\},\{D\},\{B, C\},\{C, D\}$
- For formal reasons also the empty set $\emptyset$ is frequent
- Negative border:
- $\{E\}$ not frequent, but $\emptyset$ is frequent
- $\{A, B\},\{A, C\},\{A, D\},\{B, D\}$ : not frequent, but singletons contained are
- No triples in negative border $(\{B, C, D\}$ is not, because $\{B, D\}$ is not frequent)


## TOIVONEN's AlGORITHM II

- Pass through full dataset: Count all itemsets found to be frequent or in the negative border in the sample
- Two possible outcomes:

1. No member of negative border is frequent in whole dataset: correct set of itemsets frequent in the whole are the ones frequent in the sample found to be frequent in the whole
2. Some member of negative border is frequent in whole dataset: there could be even larger sets frequent in the whole no guarantees, repeat the algorithm

## Toivonen's Algorithm: Proof

- No false positives: all frequent itemsets were determined as frequent in the whole dataset $\checkmark$
- No false negatives: If no member of the negative border is frequent in the whole dataset, we need to show that there is no itemset that
- is frequent in the whole
- while, in the sample not among the frequent itemsets
- while, in the sample, not in the negative border


## Toivonen's Algorithm: Proof

- Proof of no false negatives: Suppose the contrary. There is $S$
- frequent in the whole
- not frequent in the sample
- not in the negative border
- By monotonicity, all subsets of $S$ are frequent in the whole
- Choose $T \subseteq S$ of the smallest possible size such that still $T$ is not frequent in the sample


Negative Border: Illustration

## Toivonen's Algorithm: Proof

- Claim: $T$ is in the negative border of the sample
- Proof of Claim:
- All proper subsets of $T$ are frequent in the sample, because $T$ was chosen of the smallest possible size
- $T$ itself is not frequent in the sample
- We obtain that $T$ was in the negative border of the sample, but frequent in the whole, which is a contradiction!


## Materials / Outlook

- See Mining of Massive Datasets, 6.3.2, 6.3.3, 6.4.1, 6.4.2, 6.4.5, 6.4.6
- As usual, see http: //www.mmds.org/ in general for further resources

