
Bielefeld University
Faculty of Technology

Genome Data Science
Maren Knop

Programming

Winter 2020/2021

Number 02, Submission Deadline: Nov. 24, 2020

1. String formatting. Often, computational results are reported in form (6 P)
of text, where several pieces of information are composed into a single
sentence, e.g.: “The sum of 4 + 10 + 28 is 42”. Python provides a
convenient way of constructing such strings through the use of place
holders, as shown here by two examples:
a = 4
b = 10
c = 28
f i r s t example
my_string = ’The sum of {} + {} + {} i s {} ’ . format (a , b , c , a + b + c)
p r i n t (my_string)
second example (no t i c e the l e ad ing " f " in f r on t ot the s t r i n g !)
my_string2 = f ’ The sum of {a} + {b} + {c} i s {a + b + c } ’
p r i n t (my_string2)

Read the “Guide to the Newer Python String Format Techniques”
at https://realpython.com/python-formatted-output/ to inform
yourself about the format() function and f-strings.

(a) Find the formatting instruction (using the format() function) that
produced the following textual output for the numbers 12, 2947,
and 60947.651:

␣␣␣␣12
␣ 2 ,947
60 ,948

Make sure to use the same formatting instruction to print the
requested text for each of the numbers.

(b) Explain in detail the formatting instructions that have been used
in the following statement:

’{{ {1:2f}−{0:010.2f}:{1:b} }}’. format(1234.5678, 23)
(c) Provide a meaningful output formatting for the following list of

books using f-strings:
books = [

{ ’ t i t l e ’ : ’To K i l l a Mockingbird ’ , ’ author ’ : ’ Harper Lee ’ ,
’ i sbn ’ : 9780062420701 , ’ p r i c e ’ : 12 .99} ,

1white spaces (␣) are only visualized for your convenience

https://realpython.com/python-formatted-output/

Bielefeld University
Faculty of Technology

Genome Data Science
Maren Knop

{ ’ t i t l e ’ : ’ Pr ide and Pre judice ’ , ’ author ’ : ’ Jane Austen ’ ,
’ isbn ’ : 9781909621657 , ’ p r i c e ’ : 7 . 19} ,

{ ’ t i t l e ’ : ’ 1984 ’ , ’ author ’ : ’ George Orwell ’ ,
’ i sbn ’ : 9781328869333 , ’ p r i c e ’ : 10}]

2. Length function. Python has a builtin2 function called len() through (2 P)
which the length of an instance of a data type can be computed, e.g.
len ([’ this list has one element’]) returns 1. Which of the data types
that you learned in the lecture are valid input of the function?

3. In the lecture, you got a very brief introduction into Python’s slice (2 P)
notation for ordered collections and strings. For example, my_list[:3]
will return the first three elements of the list my_list. Inform yourself
about the capabilities of the slice notation to answer the following
questions:

(a) How to extract the last three elements of a list?

(b) How to extract all elements of odd positions of a list?

4. Set. Which data types can be stored in a set? (1 P)

5. Implicit Boolean conversion. In Python, the conversion of non- (3 P)
Boolean data types in Boolean expressions is implicit, as illustrated in
the following:

• False or ’This is a text ’ evaluates to ’This is a text ’,

• 12 and 13 evaluates to 13,

• 0 or (None and ’This is a text ’ and False) evaluates to None

To understand this behavior of Python, remember that Python eval-
uates statements from left to right. Also, Python makes use of lazy-
evaluation, i.e., it stops the evaluation of the expression as early as
its result becomes obvious. For instance, in the third example, the
expression ’This is a text ’ and False is not evaluated, because None
already falsified the and conjunctions.

Evaluate the following Boolean expression and explain your result.
Specify the position at which Python stops the evaluation:

(a) 0 and ’This is a text ’ or ’’

(b) age = 15 .5
age > 16 and ’You can buy beer ’ or ’No a l c o h o l i c ’ + \

’ beverages f o r minors , sorry ’

(c) (’a’ and 0) or (False or (−1 and 4 > 10))

Bielefeld University
Faculty of Technology

Genome Data Science
Maren Knop

6. Elif clauses. Next to if and if-else clauses, Python also allows if-{elif}∗ (1 P)
and
if-{elif }∗-else clauses, where the expression {elif}∗ means that the “elif”
statement can be repeated an arbitrary number of times. The elif
clause allows to make case distinctions such as the one shown in the
following example:
a = ’ Jane ’
i f a == ’Mary ’ :

p r i n t (’ Gotcha ! I knew i t was you , Mary ’)
e l i f a == ’ John ’ :

p r i n t (’ John ! What a s u r p r i s e ! ’)
e l i f a == ’ Jane ’ :

p r i n t (’ Of a l l people , I expected you the l e a s t , Jane ! ’)
e l s e :

p r i n t (’ Sorry , but I \ ’m l o s t . Who are you ? ’)

Use the if-{elif }∗-else clause to check the type a given variable a.
Similar to the example above, do four case distinctions to check three
types of your choice. Use the print function to reveal the variable’s
type in a full sentence.

Important:
Please submit your solution as (adequately commented) Python
file. Use the cell separator comment “#%%” to partition your
Python file analog to the six exercises. Make sure your Python file
contains only valid Python code.

2“builtin” means that this function is provided per se

