Learning in Big Data Analytics Lecture 3

Alexander Schönhuth

Bielefeld University December 1, 2020 Web Advertising

ON-LINE ADVERTISING: INTRODUCTION

- Web applications support themselves through advertising, rather than subscriptions
 - Radio and television use ads as primary resource
 - Newspapers and magazines make use of hybrid approches
- ► Most lucrative venue for advertising is search
 - ► The *adwords* model is about matching ads with search queries
 - ► Algorithms are *greedy* and *online*
 - ► We will treat this here
- ► Advertising items in online stores: *collaborative filtering*** treated in lecture *Big Data Analytics*, SS 2020

ONLINE ADVERTISING OPPORTUNITIES

- Direct placement of ads for fee/commission (Craig's List; eBay; auto trading)
- Displaying ads at fixed rate per impression (display + download of ad)
- Online stores display ads to maximize user interest (display for free)
- ► Ads are placed among results in response to search query
 - Advertisers bid for right to have ad shown in response to queries
 - ► Pay only if ad is clicked on (impression)
 - Ads selected by complex process, involving
 - search terms
 - amount of bid
 - click-through rate of particular ad
 - total budget spent by advertiser

DIRECT AD PLACEMENT

- ► Ads displayed in response to query terms
 - use inverted index of words in analogy to search engine itself
 - alternatively, advertiser specifies parameters to be stored in database
- Applicable ads are ranked by appropriateness
 - Beware of advertiser spam, filter ranking for ads that are too similar
- ► Ranking by *attractiveness* is an alternative approach. Consider:
 - ► Placement of ads in ranking enhances attractiveness
 - Attractiveness works relative to query terms
 - Ads whose attractiveness cannot be estimated (because of being new) deserve to be shown until attractiveness can be measured

DISPLAY ADS: ISSUES

- ► Ads should be shown to interested people
- ► Traditional media work with newspapers, magazines, broadcasts catering to particular interests
- ► The Web works with exploring individual user interests. For example:
 - Screen Facebook group membership
 - Screen emails (in gmail account) for frequently used terms
 - ► Time spent on sites serving particular topics
 - Screen search queries for frequently occurring terms
 - ► Browse through bookmark folders
- ► Raises (enormous!) privacy issues. Trade-off:
 - ► No subscription fees for various services
 - ► Automatically raised information can get into hands of real people

Online Algorithms and the Competitive Ratio

ONLINE ALGORITHMS

- ► Matching ads with queries are often *online algorithms*
- ► *Offline Algorithms*:
 - ► All data needed by algorithm is available initially
 - ► Algorithm can access data in arbitrary order
 - ► Algorithm produces answer accordingly
- ► *Online Algorithms*:
 - Not all data can be accessed before answer is required
 - Recall data stream mining: data appears in particular order, not all data can be stored etc.
- Selecting ads for queries easy offline:
 - ► E.g. consider a month full of search queries
 - ► *Issue*: Assign ads to queries in a most profitable way
 - ► Offline: assign ads to queries that maximizes both
 - search engine revenue
 - number of impressions for each advertiser

But: cannot wait for a month until displaying ad on query

EXAMPLE: ONLINE VERSUS OFFLINE ALGORITHM

- ▶ Manufacturer A_1 and A_2 both have 100 EUR budget to spend
- $ightharpoonup A_1$ bids 10 cents on search term 'chesterfield'
- ► A₂ bids 20 cents on search terms 'chesterfield' and 'sofa'
- ► Imagine:
 - Scenario 1: Lots of queries for 'sofa', few for 'chesterfield'
 Need to assign 'chesterfield' to A₁
 - ► *Scenario 2:* Lots of search queries for 'chesterfield'

 Sequeries can be given to A₂; both will spend entire budget
- ► *Offline:* Knowing all queries beforehand allows to assign them to bids optimally
- ▶ *Online*: Mistakes are possible; overspending A_2 's bids on chesterfield queries

GREEDY ALGORITHMS

- ► Many online algorithms are *greedy algorithms*
- ► Greedy algorithms decide based on actual and past input
- ► They maximize some appropriate function

EXAMPLE: GREEDY ALGORITHM

Consider earlier situation, involving manufacturers A_1 and A_2 and their bids on search terms 'chesterfield' and 'sofa'.

Greedy Algorithm:

Assign each query to the highest bidder. That is,

- ► Assign query to A_2 if A_2 has budget left.
- ► Continue assigning queries to A_1 as long as A_1 has budget.
- ► Result: Assign first 500 'chesterfield' and 'sofa' queries to A₂; continue to assign following 1000 'chesterfield' queries to A₁
- ► Extreme scenario: 500 'chesterfield' queries arrive followed by 500 'sofa' queries
 - ▶ Offline algorithm assigns chesterfield queries to A_1 , and sofa queries to A_2
 - ▶ *Online* algorithm assigns chesterfield queries to A_2 , nothing to A_1

ONLINE ALGORITHMS: THE COMPETITIVE RATIO

- ▶ Online algorithms can only be worse than best offline algorithms
- ► How much worse are they? Good online algorithms differ only by little from the offline version
- ► Consider a particular problem, and input *I*
- ► Let *C*_{opt}(*I*) be the value that one obtains when running the optimum offline algorithm
- ▶ Let $C_{on}(I)$ that one obtains when running the online algorithm under consideration

ONLINE ALGORITHMS: THE COMPETITIVE RATIO

- ► Consider a particular problem, and input *I*
- ► Let *C*_{opt}(*I*) be the value that one obtains when running the optimum offline algorithm
- ▶ Let $C_{on}(I)$ that one obtains when running the online algorithm under consideration

DEFINITION [COMPETITIVE RATIO]

The *competitive ratio* of an online algorithm is (if it exists) a constant c < 1, such that for any input I

$$C_{\text{on}}(I) \ge c \cdot C_{\text{opt}}(I)$$
 (1)

ONLINE ALGORITHMS: THE COMPETITIVE RATIO

DEFINITION [COMPETITIVE RATIO]

The *competitive ratio* of an online algorithm is (if it exists) a constant c < 1, such that for any input I

$$C_{\text{on}}(I) \ge c \cdot C_{\text{opt}}(I)$$

EXPLANATION: For an online algorithm with competitive ratio *c*, the value of the objective function is at least *c* times the optimal value one can achieve using an offline algorithm.

EXAMPLE: COMPETITIVE RATIO I

Consider earlier situation, involving manufacturers A_1 and A_2 and their bids on search terms 'chesterfield' and 'sofa'.

- ► *Extreme scenario*: 500 'chesterfield' queries arrive followed by 500 'sofa' queries
- ▶ Offline algorithm assigns chesterfield to A_1 , and sofa to A_2

 Revenue: 150 EUR
- ► *Online* algorithm assigns chesterfield to A_2 , nothing to A_1 \bowtie Revenue: 100 EUR
- ► So, on this instance, $C_{on}(I) = \frac{2}{3} \cdot C_{opt}(I)$
- ightharpoonup That means that for the competitive ratio c, we have

$$c \leq \frac{2}{3}$$

EXAMPLE: COMPETITIVE RATIO II

Consider earlier situation, involving manufacturers A_1 and A_2 and their bids on search terms 'chesterfield' and 'sofa'.

- Extreme scenario: 500 'chesterfield' queries arrive followed by 500 'sofa' queries
- Consider to raise A_1 's bid to 20ϵ cents per bid, then:
 - ▶ Offline algorithm assigns chesterfield to A_1 , and sofa to A_2
 - Revenue now: $200 500 \cdot \epsilon \stackrel{\epsilon \to 0}{\longrightarrow} 200 \text{ EUR}$
 - ► *Online* algorithm assigns chesterfield to A_2 , nothing to A_1 , because still A_2 's bid is greater than A_1 's
 - Revenue still: 100 EUR
- ► On this instance, c approaches $\frac{1}{2}$
- ▶ One can indeed show that

$$c = \frac{1}{2}$$

The Matching Problem

MATCHES AND PERFECT MATCHES

DEFINITION [BIPARTITE GRAPHS]

A bipartite graph G = (V, E) with vertices V and edges E is referred to as *bipartite* iff

▶ there are $V_1, V_2 \subset V$ such that

$$V = V_1 \dot{\cup} V_2$$
 and $E \subset (V_1 \times V_2)$

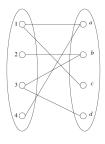
Bipartite graph with $E \subset \{1, 2, 3, 4\} \times \{a, b, c, d\}$

Adopted from mmds.org

MATCHES AND PERFECT MATCHES

DEFINITION [MATCHINGS]

- ▶ A *matching* $M \subset E$ is a set of edges such that for each vertex $v \in V$ there is at most one $e \in M$ in which v appears
- ► A *perfect matching* is a matching that covers every node
- ► A matching is *maximal* iff any other matching is at most as large



Adopted from mmds.org

- ► (1,a),(2,b),(3,d) is a matching, but not a perfect matching
- ► (1, c), (2, b), (3, d), (4, a) is a perfect matching
- ► (1, c), (2, b), (3, d), (4, a) is also maximal
- Note: every perfect matching is also maximal

GREEDY ALGORITHM FOR MAXIMAL MATCHING

- Offline algorithms for maximal matchings have been studied for decades
- ▶ The algorithms run in nearly $O(n^2)$ time for graphs on n vertices
- ► Here, we consider online algorithms (also well studied)
- ► Greedy algorithm for maximal matching:
 - Consider edges in any order
 - Add edge to matching iff both ends are not yet covered by any edge collected so far
- ► *Example*:
 - Consider vertices from example before in order (1, a), (1, c), (2, b), (3, b), (3, d), (4, a)
 - ▶ This yields non-maximal matching (1, a), (2, b), (3, d)
 - \blacktriangleright Any order starting with (1, a), (3, b) implies matching of size 2

- ► In the example, we had optimal matching of size 4 and greedy matching of size 2
- ► That implies that $\frac{1}{2}$ is an upper bound for the competitive ratio for Greedy matching
- ▶ We would like to prove that $\frac{1}{2}$ is the competitive ratio

Notation

- ightharpoonup Let M_o be a maximal matching
- ightharpoonup Let M_g be the matching computed by the Greedy algorithm
- ▶ Let *L* be the left nodes matched in M_o , but not in M_g
- ► Let *R* be the right nodes connected by edges to any vertex in *L*

Claim: Every vertex from R is matched in M_g .

Proof: Suppose that $r \in R$ is not matched in M_g . At some point, the greedy algorithm considers (l, r) with $l \in L$. At that point, however, neither $l \in L$ nor $r \in R$ were encountered by the Greedy algorithm. So (l, r) will be included in the matching, a contradiction!

Conclusion: Every node from R is matched in M_g .

Notation/Facts

- ► Let M_o be a maximal matching
- ▶ Let M_g be the matching computed by the Greedy algorithm
- ▶ Let *L* be the left nodes matched in M_o , but not in M_g
- ► Let *R* be the right nodes connected by edges to any vertex in *L*
- ► We proved that every node from R is matched in M_g
- ▶ In M_o , all nodes in L are matched with nodes from R, implies

$$|L| \le |R| \tag{2}$$

ightharpoonup Every node in R is matched in M_g , implies

$$|R| \le |M_g| \tag{3}$$

► Together, this yields

$$|L| \le |M_g| \tag{4}$$

► From before, we have

$$|L| \le |M_g| \tag{5}$$

• Only nodes in L can be matched in M_o , but not in M_g , implies

$$|M_o| \le |M_g| + |L| \tag{6}$$

► (5) and (6) together imply

$$|M_o| \le 2|M_g| \quad \text{or} \quad |M_g| \ge \frac{1}{2}|M_o|$$
 (7)

That means that the competitive ratio c is at least $\frac{1}{2}$, so with the above example, that

$$c = \frac{1}{2}$$

GENERAL / FURTHER READING

Literature

► Mining Massive Datasets, Sections 8.1, 8.2, 8.3:

```
http:
```

//infolab.stanford.edu/~ullman/mmds/ch8.pdf

