Learning in Big Data Analytics Lecture 2

Alexander Schönhuth

Bielefeld University November 24, 2020 Supervised Learning

► There is a functional relationship

$$f^*: \mathbb{R}^d \to V$$

we would like to understand, or *learn*.

- ightharpoonup Regression: $V = \mathbb{R}$
- ightharpoonup Classification: $V = \{1, ..., k\}$
- ► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

► There is a functional relationship

$$f^*: \mathbb{R}^d \to V$$

we would like to understand, or *learn*.

- ightharpoonup Regression: $V = \mathbb{R}$
- ► Classification: $V = \{1, ..., k\}$
- ► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,n}$$

that reflect this functional relationship.

► There is a functional relationship

$$f^*: \mathbb{R}^d \to V$$

we would like to understand, or *learn*.

- ightharpoonup Regression: $V = \mathbb{R}$
- ightharpoonup Classification: $V = \{1, ..., k\}$
- ► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

► There is a functional relationship

$$f^*: \mathbb{R}^d \to V$$

we would like to understand, or *learn*.

- ightharpoonup Regression: $V = \mathbb{R}$
- ightharpoonup Classification: $V = \{1, ..., k\}$
- ► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

Final goal: Predict $f^*(x)$ well on unknown data points x.

SUPERVISED VERSUS UNSUPERVISED LEARNING

- ► *Unsupervised Learning*:
 - ► Given unlabeled data

$$(x_i)_{i=1,\ldots,m}$$

- ► *Goal:* Infer subgroups of data points
- ► *Alternative Problem Formulation*: Learn the probability distribution

that governs the generation of data points

SUPERVISED VERSUS UNSUPERVISED LEARNING

- ► *Unsupervised Learning*:
 - ► Given unlabeled data

$$(x_i)_{i=1,\ldots,m}$$

- ► *Goal:* Infer subgroups of data points
- ► *Alternative Problem Formulation*: Learn the probability distribution

that governs the generation of data points

EXAMPLE

SUPERVISED VERSUS UNSUPERVISED LEARNING

- ► Supervised Learning:
 - ► Given labeled data

$$(x_i, y_i)_{i=1,\ldots,m}$$

- ► *Goal:* Learn functional relationship $f^* : \mathbb{R}^d \to V$, s.t. $y_i = f^*(x_i)$
- ► *Alternative Problem Formulation:* Learn the probability distribution

$$P(X, y)$$
 or $P(y \mid X)$

as a more general version of functional relationship

SUPERVISED VERSUS UNSUPERVISED LEARNING

- ► Supervised Learning:
 - ► Given labeled data

$$(x_i, y_i)_{i=1,\ldots,m}$$

- ► *Goal:* Learn functional relationship $f^* : \mathbb{R}^d \to V$, s.t. $y_i = f^*(x_i)$
- Alternative Problem Formulation: Learn the probability distribution

$$P(X, y)$$
 or $P(y \mid X)$

as a more general version of functional relationship

EXAMPLE

SUPERVISED LEARNING: TRAINING

- ▶ The idea is to set up a *training procedure* (an algorithm) that *learns* f^* from the training data.
- ▶ Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- ▶ In most cases, $f \in \mathcal{M}$ are parameterized by parameters **w**. This means that we have to pick an appropriate choice of parameters **w** for learning f^* .

SUPERVISED LEARNING: TRAINING

- ▶ The idea is to set up a *training procedure* (an algorithm) that *learns* f^* from the training data.
- ▶ Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- ▶ In most cases, $f \in \mathcal{M}$ are parameterized by parameters **w**. This means that we have to pick an appropriate choice of parameters **w** for learning f^* .

- ▶ We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- ▶ *Optimization*: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C(f, f^*)$
- ▶ *Generalization*: Optimization procedure should address that f is to approximate f* well on *unknown data points*.

- ▶ We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- ▶ *Optimization*: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C(f, f^*)$
- ► *Generalization*: Optimization procedure should address that f is to approximate f^* well on *unknown data points*.

LINEAR REGRESSION

Example: $f: \mathbb{R} \to \mathbb{R}$

PERCEPTRON

Example: $f: \mathbb{R}^2 \to \{0, 1\}$

$$f \quad \mathbb{R}^2 \quad \longrightarrow \quad \{0 = \text{blue}, 1 = \text{red}\}$$

$$(x_1, x_2) \quad \mapsto \quad \begin{cases} 1 \quad x_2 - x_1 > 0 \\ 0 \quad x_2 - x_1 \le 0 \end{cases}$$

$$(1)$$

SUMMARY

- ► How to set up the data being used for training
- ightharpoonup A model class \mathcal{M} , for example linear functions
- ▶ A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ightharpoonup A model class \mathcal{M} , for example linear functions
- ▶ A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ightharpoonup A model class \mathcal{M} , for example linear functions
- ▶ A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ▶ An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ightharpoonup A model class \mathcal{M} , for example linear functions
- ► A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ► An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

- ► How to set up the data being used for training
- ightharpoonup A model class \mathcal{M} , for example linear functions
- ► A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ► An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

NOTATION

- ► The dataset is given by a *design matrix* $\mathbf{X} \in \mathbb{R}^{m \times d}$ where m is the number of data points and d is the number of *features*
- ▶ Each data point x_i (a row in **X**) is assigned to a *label* y_i that reflects the true functional relationship $y_i = f^*(x_i)$, where further $\mathbf{y} = (y_1, ..., y_m) \in V^m$ is the *label vector*.

NOTATION

- ► The dataset is given by a *design matrix* $\mathbf{X} \in \mathbb{R}^{m \times d}$ where m is the number of data points and d is the number of *features*
- ► Each data point x_i (a row in **X**) is assigned to a *label* y_i that reflects the true functional relationship $y_i = f^*(x_i)$, where further $\mathbf{y} = (y_1, ..., y_m) \in V^m$ is the *label vector*.

Generalization

- ightharpoonup Split (**X**, **y**) into

 - ► training data $(\mathbf{X}^{(\text{train})}, \mathbf{y}^{(\text{train})})$ ► validation data $(\mathbf{X}^{(\text{val})}, \mathbf{y}^{(\text{val})})$ ► test data $(\mathbf{X}^{(\text{test})}, \mathbf{y}^{(\text{test})})$
- ▶ While *training data* is to pick the optimal set of parameters
- \blacktriangleright Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright (X^(test), y^(test)) are never touched during training.
- ► The final goal is to minimize the cost on the test data.

- ightharpoonup Split (**X**, **y**) into

 - ► training data $(\mathbf{X}^{(\text{train})}, \mathbf{y}^{(\text{train})})$ ► validation data $(\mathbf{X}^{(\text{val})}, \mathbf{y}^{(\text{val})})$ ► test data $(\mathbf{X}^{(\text{test})}, \mathbf{y}^{(\text{test})})$
- ▶ While *training data* is to pick the optimal set of parameters
- \blacktriangleright Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright (X^(test), v^(test)) are never touched during training.
- ► The final goal is to minimize the cost on the test data.

- ightharpoonup Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters
- ightharpoonup Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright (X^(test), v^(test)) are never touched during training.
- ► The final goal is to minimize the cost on the test data.

- ightharpoonup Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
- ightharpoonup Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright (X^(test), v^(test)) are never touched during training.
- ► The final goal is to minimize the cost on the test data.

- ightharpoonup Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
- ightharpoonup Hyperparameters can refer to choosing subsets of \mathcal{M} . For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
- $ightharpoonup (X^{(test)}, \mathbf{v}^{(test)})$ are never touched during training.
- ► The final goal is to minimize the cost on the test data.

ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

- ► Choose a class of models that has the right *capacity*
- ► Capacity too large: *overfitting*
- ► Capacity too small: *underfitting*

ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

- Choose a class of models that has the right capacity
- ► Capacity too large: *overfitting*
- ► Capacity too small: *underfitting*

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

▶ Usually, *C* refers to only known data points. That is, *C* evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
 (2)

where x_i runs over all training data points.

Add a *regularization term* to cost function, and choose f_w that yields minimal

$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w})$$
 (3)

 \triangleright λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

▶ Usually, *C* refers to only known data points. That is, *C* evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
 (2)

where x_i runs over all training data points.

Add a *regularization term* to cost function, and choose f_w that yields minimal

$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w}) \tag{3}$$

 $ightharpoonup \lambda$ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

► Prominent examples:

- $ightharpoonup L_1 norm: \Omega(\mathbf{w}) := \sum_i |w_i|$
- $ightharpoonup L_2 norm: \Omega(\mathbf{w}) := \sum_i w_i^2$
- ► Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- ▶ ™ Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

- ► Prominent examples:
 - $ightharpoonup L_1 norm: \Omega(\mathbf{w}) := \sum_i |w_i|$
 - $ightharpoonup L_2 norm: \Omega(\mathbf{w}) := \overline{\sum}_i w_i^2$
- ► Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- ▶ ™ Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

- ► Prominent examples:
 - $ightharpoonup L_1 norm: \Omega(\mathbf{w}) := \sum_i |w_i|$
 - $ightharpoonup L_2 norm: \Omega(\mathbf{w}) := \overline{\sum}_i w_i^2$
- ► Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- ► I Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: OPTIMIZATION

EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.

- ► *Early stopping*: Stop the optimization procedure before cost function reaches an optimum on the training data.
- ► *Dropout*: Randomly fix parameters to zero, and optimize remaining parameters.

Prominent Supervised Learning Model Examples

- ▶ Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- ► Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \mathbb{R}^{d} \longrightarrow \mathbb{R}$$

$$\mathbf{x} \mapsto \mathbf{w}^{T} \mathbf{x} \succeq \underbrace{\downarrow}_{\mathbf{k}} \omega_{j} \times_{j}$$

$$(4)$$

- ▶ Remark: Note that the case $\mathbf{w}^T \mathbf{x} + b$ can be treated as a special case to be included in \mathcal{M} , by augmenting vectors \mathbf{x}_i by an entry 1 (think about this...)
- ► Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), ..., f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

- ▶ Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- ► Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$\mathbf{x} \mapsto \mathbf{w}^T \mathbf{x}$$
(4)

- ► *Remark*: Note that the case $\mathbf{w}^T \mathbf{x} + b$ can be treated as a special case to be included in \mathcal{M} , by augmenting vectors \mathbf{x}_i by an entry 1 (think about this...)
- ► Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), ..., f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$

- ▶ Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- ► Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$\mathbf{x} \mapsto \mathbf{w}^T \mathbf{x}$$
(4)

- ► *Remark*: Note that the case $\mathbf{w}^T \mathbf{x} + b$ can be treated as a special case to be included in \mathcal{M} , by augmenting vectors \mathbf{x}_i by an entry 1 (think about this...)
- ► Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f, f^*) := \frac{1}{m} ||(f(\mathbf{x}_1), ..., f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{7}$$

- ightharpoonup *Global optimum* if $\mathbf{X}^T\mathbf{X}$ is invertible
- ▶ Do this on *training data* (so $X = X^{(train)}$, $y = y^{(train)}$) only. Hope that cost on test data is small.

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{7}$$

- ► *Global optimum* if $\mathbf{X}^T\mathbf{X}$ is invertible
- ▶ Do this on *training data* (so $X = X^{(train)}, y = y^{(train)}$) only. Hope that cost on test data is small.

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{7}$$

- ► *Global optimum* if $\mathbf{X}^T\mathbf{X}$ is invertible
- ▶ Do this on *training data* (so $X = X^{(train)}, y = y^{(train)}$) only. Hope that cost on test data is small.

NORMAL EQUATIONS

- ► *Left*: Data points, and the linear function $y = w_1x$ that approximates them best
- ▶ *Right*: Mean squared error (MSE) depending on w_1
- Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the perceptron algorithm)

NORMAL EQUATIONS

- ► *Left*: Data points, and the linear function $y = w_1x$ that approximates them best
- ightharpoonup Right: Mean squared error (MSE) depending on w_1
- ► Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the perceptron algorithm)

NEAREST NEIGHBOR CLASSIFICATION

► Consider appropriate distance measure

$$D: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}_+ \tag{8}$$

► For unknown data point x, determine the closest given data point

$$\mathbf{x}_{i^*} := \operatorname{argmin}_i(D(\mathbf{x}, \mathbf{x}_i)) \tag{9}$$

▶ Predict label of \mathbf{x} as y_{i^*}

NEAREST NEIGHBOR CLASSIFICATION

► Consider appropriate distance measure

$$D: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}_+ \tag{8}$$

► For unknown data point x, determine the closest given data point

$$\mathbf{x}_{i^*} := \operatorname{argmin}_i(D(\mathbf{x}, \mathbf{x}_i)) \tag{9}$$

► Predict label of \mathbf{x} as y_{i^*}

SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}^T \mathbf{x}_i = \sum_{i=1}^m \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle$$
 (10)

- ▶ Replace $\langle .,. \rangle$ by different *kernel* (i.e. scalar product) k(.,.), that is by computing $\langle \phi(.), \phi(.) \rangle$ for appropriate ϕ
- Seek α 's to maximize margin: still easy to optimize both for regression and classification!

SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}^T \mathbf{x}_i = \sum_{i=1}^m \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle$$
 (10)

- ▶ Replace $\langle .,. \rangle$ by different *kernel* (i.e. scalar product) k(.,.), that is by computing $\langle \phi(.), \phi(.) \rangle$ for appropriate ϕ
- Seek α 's to maximize margin: still easy to optimize both for regression and classification!

SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}^T \mathbf{x}_i = \sum_{i=1}^m \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle$$
 (10)

- ► Replace $\langle .,. \rangle$ by different *kernel* (i.e. scalar product) k(.,.), that is by computing $\langle \phi(.), \phi(.) \rangle$ for appropriate ϕ
- Seek α 's to maximize margin: still easy to optimize both for regression and classification!

- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space

- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space

- ► A perceptron divides the space into two half spaces
- ► Half spaces capture the two different classes
- ► Normal vector alternative description of half space

- ► Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?

- ► Several half spaces (normal vectors) divide training data
- ▶ *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?

- ► Several half spaces (normal vectors) divide training data
- ► *Question:* any half space optimal, in a sensibly defined way?
- ▶ What to do if data cannot be separated (is *non-separable*)?

SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*
- If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize *loss function* that
 - penalizes misclassified points
 - penalizes points correctly classified by too close to hyperplane (to a lesser extent)

SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize *loss function* that
 - penalizes misclassified points
 - penalizes points correctly classified by too close to hyperplane (to a lesser extent)

SUPPORT VECTOR MACHINES: MOTIVATION

- ► Support vector machines (SVM's) address to choose most reasonable half space
- ► SVM's choose half space that maximizes the *margin*
- ► If separable, maximize distance between hyperplane and closest data points
- ▶ If not separable, minimize *loss function* that
 - penalizes misclassified points
 - penalizes points correctly classified by too close to hyperplane (to a lesser extent)

SEPARABLE DATA

- *Goal:* Select hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ that maximizes distance γ
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)

SEPARABLE DATA

- *Goal:* Select hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ that maximizes distance γ
- ► *Intuition*: The further away data from hyperplane, the more certain their classification
- ► Increases chances to correctly classify unseen data (to generalize)

SUPPORT VECTORS

- \blacktriangleright Two parallel hyperplanes at distance γ touch one or more of support vectors
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)

SUPPORT VECTORS

- \blacktriangleright Two parallel hyperplanes at distance γ touch one or more of support vectors
- ▶ In most cases, d-dimensional data set has d + 1 support vectors (but there can be more)

PROBLEM FORMULATION: FIRST TRY

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w}, b , maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (11)

PROBLEM FORMULATION: FIRST TRY

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w}, b , maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (11)

Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal γ

PROBLEM FORMULATION: FIRST TRY

Let $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ be a training data set, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, +1\}, i = 1, ..., n$.

PROBLEM: By varying \mathbf{w} , b, maximize γ such that

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge \gamma \quad \text{for all } i = 1, ..., n$$
 (11)

Issue

- ► Replacing **w** and *b* by 2**w** and 2*b* yields $y_i(2\mathbf{w}\mathbf{x}_i + 2b) \ge 2\gamma$
- ightharpoonup There is no optimal γ

Problem badly formulated ™ try harder!

PROBLEM FORMULATION: SOLUTION

- ▶ Data set (\mathbf{x}_i, y_i) , i = 1, ..., n as before
- ▶ *Solution:* Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$y_i(\mathbf{wx} + b) \in \{-1, +1\}$$
 (12)

• *Good Formulation:* By varying \mathbf{w} , b, maximize γ such that

and (12) applies where
$$d(x_i, H) := \min_{x \in X} \{ d(x_i, x) \mid \forall x \in X \in X \}$$
is the distance of x_i to the hyperplane
$$H := \{ * \mid \forall x \in X \} \}$$

ALTERNATIVE PROBLEM FORMULATION I

- \mathbf{w} , b, γ determined according to (12),(13)
- x_2 is support vector on lower hyperplane, so by (12), $wx_2 + b = -1$
- ▶ Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{14}$$

ALTERNATIVE PROBLEM FORMULATION I

- \mathbf{w} , b, γ determined according to (12),(13)
- \mathbf{x}_2 is support vector on lower hyperplane, so by (12), $\mathbf{w}\mathbf{x}_2 + b = -1$
- Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{14}$$

- \mathbf{w} , b, γ determined according to (12),(13)
- \mathbf{x}_2 is support vector on lower hyperplane, so by (12), $\mathbf{w}\mathbf{x}_2 + b = -1$
- ► Let x_1 be the projection of x_2 onto upper hyperplane:

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||} \tag{14}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{15}$$

That is, further, \mathbf{x}_1 is on the hyperplane defined by $\mathbf{w}\mathbf{x} + b = 1$, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{15}$$

Substituting (14) into (15) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{16}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{15}$$

Substituting (14) into (15) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{16}$$

By further regrouping, we obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{17}$$

That is, further, x_1 is on the hyperplane defined by wx + b = 1, meaning

$$\mathbf{w}\mathbf{x}_1 + b = 1 \tag{15}$$

Substituting (14) into (15) yields

$$\mathbf{w} \cdot (\mathbf{x}_2 + 2\gamma \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1 \tag{16}$$

By further regrouping, we obtain

$$\mathbf{w}\mathbf{x}_2 + b + 2\gamma \frac{\mathbf{w}\mathbf{w}}{||\mathbf{w}||} = 1 \tag{17}$$

Because $\mathbf{w}\mathbf{w} = ||\mathbf{w}||^2$, by further regrouping, we conclude that

$$\gamma = \frac{1}{||\mathbf{w}||} \tag{18}$$

Let dataset (\mathbf{x}_i, y_i) , i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying \mathbf{w}, b , minimize $||\mathbf{w}||$ subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (19)

Let dataset (\mathbf{x}_i, y_i) , i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying \mathbf{w} , b, minimize $||\mathbf{w}||$ subject to

$$y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \quad \text{for all } i = 1, ..., n$$
 (19)

Optimizing under Constraints

- ► Topic is broadly covered
- Many packages can be used
- ► Target function $\sum_i w_i^2$ quadratic; well manageable

EXAMPLE

NON SEPARABLE DATA SETS

Situation:

- ► Some points misclassified, some too close to boundary

 ** bad points*
- ► *Non separable data*: any choice of w, b yields bad points

NON SEPARABLE DATA SETS

Situation:

- ► Some points misclassified, some too close to boundary

 ** bad points
- ► *Non separable data*: any choice of **w**, *b* yields bad points

- ► *Situation:* No hyperplane can separate the data points correctly
- ► Approach:
 - Determine appropriate penalties for bad points
 - Solve original problem, by involving penalties

- ► *Situation:* No hyperplane can separate the data points correctly
- ► *Approach*:
 - ► Determine appropriate penalties for bad points
 - Solve original problem, by involving penalties

- ► *Situation:* No hyperplane can separate the data points correctly
- ► *Approach*:
 - ► Determine appropriate penalties for bad points
 - ► Solve original problem, by involving penalties

Let (\mathbf{x}_i, y_i) , i = 1, ...n be training data, where

- $ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$
- ▶ $y_i \in \{-1, +1\}$

and let **w** = $(w_1, ..., w_d)$.

Let (\mathbf{x}_i, y_i) , i = 1, ...n be training data, where

$$ightharpoonup \mathbf{x}_i = (x_{i1}, ..., x_{id}),$$

▶
$$y_i \in \{-1, +1\}$$

and let $\mathbf{w} = (w_1, ..., w_d)$.

Minimize the following function:

$$f(\mathbf{w}, b) = \frac{1}{2} \sum_{j=1}^{d} w_j^2 + C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}$$
 (20)

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- ▶ Minimizing ||w|| equivalent to minimizing monotone function of ||w||
 ™ Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$

- C is a regularization parameter
 - Large C: minimize misclassified points, but accept narrow margin
 - Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w|| ™ Minimizing f seeks minimal ||w||
- ▶ Vectors w and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i$$
 and $\frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$

C is a regularization parameter

Large C: minimize misclassified points, but accept narrow margin

Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w||
 Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

C is a regularization parameter

Large C: minimize misclassified points, but accept narrow margin
 Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w||
 Minimizing f seeks minimal ||w||
- ▶ Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- ► *C* is a regularization parameter
 - ► Large *C*: minimize misclassified points, but accept narrow margin
 - Small C: accept misclassified points, but widen margin

$$f(\mathbf{w}, b) = \underbrace{\frac{1}{2} \sum_{j=1}^{d} w_j^2}_{\text{Seek minimal } ||\mathbf{w}||} + \underbrace{C \sum_{i=1}^{n} \max\{0, 1 - y_i(\sum_{j=1}^{d} w_j x_{ij} + b)\}}_{\text{Bad point penalty}}$$

- Minimizing ||w|| equivalent to minimizing monotone function of ||w||
 Minimizing f seeks minimal ||w||
- ► Vectors **w** and training data balanced in terms of basic units:

$$\frac{\partial(||\mathbf{w}||^2/2)}{\partial w_i} = w_i \quad \text{and} \quad \frac{\partial(\sum_{j=1}^d w_j x_{ij} + b)}{\partial w_i} = x_{ij}$$

- ► *C* is a regularization parameter
 - ► Large *C*: minimize misclassified points, but accept narrow margin
 - ► Small C: accept misclassified points, but widen margin

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$
 (21)

- ▶ $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ▶ The worse x_i is located the greater $L(x_i, y_i)$

$$L(\mathbf{x}_{i}, y_{i}) = \max\{0, 1 - y_{i}(\sum_{j=1}^{d} w_{j}x_{ij} + b)\}$$
 (21)

- ► $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ▶ The worse x_i is located the greater $L(x_i, y_i)$

$$L(\mathbf{x}_{i}, y_{i}) = \max\{0, 1 - y_{i}(\sum_{j=1}^{d} w_{j}x_{ij} + b)\}$$
 (21)

- ► $L(\mathbf{x}_i, y_i) = 0$ iff \mathbf{x}_i on the correct side of hyperplane with sufficient margin
- ► The worse \mathbf{x}_i is located the greater $L(\mathbf{x}_i, y_i)$

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{i=1}^d w_i x_{ij} + b)\}\$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (22)

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (22)

Reflecting:

- ▶ If x_i is on right side with suffcient margin: nothing to be done
- ightharpoonup Otherwise adjust w_i to have x_i better placed

Let the *hinge function L* be defined by

$$L(\mathbf{x}_i, y_i) = \max\{0, 1 - y_i(\sum_{j=1}^d w_j x_{ij} + b)\}$$

Partial derivatives of hinge function:

$$\frac{\partial L}{\partial w_j} = \begin{cases} 0 & \text{if } y_i(\sum_{j=1}^d w_j x_{ij} + b) \ge 1\\ -y_i x_{ij} & \text{otherwise} \end{cases}$$
 (22)

Reflecting:

- ▶ If x_i is on right side with suffcient margin: nothing to be done
- ▶ Otherwise adjust w_i to have \mathbf{x}_i better placed

GENERAL / FURTHER READING

Literature

- Deep Learning, Chapter 5: https://www.deeplearningbook.org/
- ► Mining Massive Datasets, Chapter 12, Section 3: http://infolab.stanford.edu/~ullman/mmds/ch12.pdf

