Learning in Big Data Analytics Lecture 2

Alexander Schönhuth

Bielefeld University November 24, 2020

Supervised Learning

SUPERVISED LEARNING

- There is a functional relationship

$$
f^{*}: \mathbb{R}^{d} \rightarrow V
$$

we would like to understand, or learn.

- Regression: $V=\mathbb{R}$
- Classification: $V=\{1, \ldots, k\}$
- To learn it, we are given m data points

$$
\left(x_{i}, f^{*}\left(x_{i}\right)=y_{i}\right)_{i=1, \ldots, m}
$$

that reflect this functional relationship.

SUPERVISED LEARNING

- There is a functional relationship

$$
f^{*}: \mathbb{R}^{d} \rightarrow V
$$

we would like to understand, or learn.

- Regression: $V=\mathbb{R}$
- Classification: $V=\{1, \ldots, k\}$
- To learn it, we are given m data points

$$
\left(x_{i}, f^{*}\left(x_{i}\right)=y_{i}\right)_{i=1, \ldots, m}
$$

that reflect this functional relationship.

SUPERVISED LEARNING

- There is a functional relationship

$$
f^{*}: \mathbb{R}^{d} \rightarrow V
$$

we would like to understand, or learn.

- Regression: $V=\mathbb{R}$
- Classification: $V=\{1, \ldots, k\}$
- To learn it, we are given m data points

$$
\left(x_{i}, f^{*}\left(x_{i}\right)=y_{i}\right)_{i=1, \ldots, m}
$$

that reflect this functional relationship.

SUPERVISED LEARNING

- There is a functional relationship

$$
f^{*}: \mathbb{R}^{d} \rightarrow V
$$

we would like to understand, or learn.

- Regression: $V=\mathbb{R}$
- Classification: $V=\{1, \ldots, k\}$
- To learn it, we are given m data points

$$
\left(x_{i}, f^{*}\left(x_{i}\right)=y_{i}\right)_{i=1, \ldots, m}
$$

that reflect this functional relationship.
Final goal: Predict $f^{*}(x)$ well on unknown data points x.

Supervised versus Unsupervised Learning

- Unsupervised Learning:
- Given unlabeled data

$$
\left(x_{i}\right)_{i=1, \ldots, m}
$$

- Goal: Infer subgroups of data points distribution
that governs the generation of data points

Supervised versus Unsupervised Learning

- Unsupervised Learning:
- Given unlabeled data

$$
\left(x_{i}\right)_{i=1, \ldots, m}
$$

- Goal: Infer subgroups of data points
- Alternative Problem Formulation: Learn the probability distribution

$$
\mathbf{P}(\mathbf{X})
$$

that governs the generation of data points

EXAMPLE

Supervised versus Unsupervised Learning

- Supervised Learning:
- Given labeled data

$$
\left(x_{i}, y_{i}\right)_{i=1, \ldots, m}
$$

- Goal: Learn functional relationship $f^{*}: \mathbb{R}^{d} \rightarrow V$, s.t. $y_{i}=f^{*}\left(x_{i}\right)$
- Alternative Problem Formulation: Learn the probability distribution

as a more general version of functional relationship

Supervised versus Unsupervised Learning

- Supervised Learning:
- Given labeled data

$$
\left(x_{i}, y_{i}\right)_{i=1, \ldots, m}
$$

- Goal: Learn functional relationship $f^{*}: \mathbb{R}^{d} \rightarrow V$, s.t. $y_{i}=f^{*}\left(x_{i}\right)$
- Alternative Problem Formulation: Learn the probability distribution

$$
\mathbf{P}(\mathbf{X}, \mathbf{y}) \quad \text { or } \quad \mathbf{P}(\mathbf{y} \mid \mathbf{X})
$$

as a more general version of functional relationship

EXAMPLE

$$
\begin{aligned}
& P(3 \mid \tilde{x})=0.5 \\
& P(4 \mid \tilde{x})=0.5
\end{aligned}
$$

Supervised Learning: Training

- The idea is to set up a training procedure (an algorithm) that learns f^{*} from the training data.
- Learning f^{*} means to approximate it by $f: \mathbb{R}^{d} \rightarrow V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M}.
\quad In most cases, $f \in \mathcal{M}$ are parameterized by parameters w.
This means that we have to pick an appropriate choice of
parameters w for learning f^{*}.

Supervised Learning: Training

- The idea is to set up a training procedure (an algorithm) that learns f^{*} from the training data.
- Learning f^{*} means to approximate it by $f: \mathbb{R}^{d} \rightarrow V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M}.
- In most cases, $f \in \mathcal{M}$ are parameterized by parameters \mathbf{w}. This means that we have to pick an appropriate choice of parameters \mathbf{w} for learning f^{*}.

Supervised Learning

- We need to determine a cost (or loss) function C where $C\left(f, f^{*}\right)$ measures how well $f \in \mathcal{M}$ approximates f^{*}.
- Optimization: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C\left(f, f^{*}\right)$
- Generalization: Optimization procedure should address that f is to approximate f^{*} well on unknown data points.

SUPERVISED LEARNING

- We need to determine a cost (or loss) function C where $C\left(f, f^{*}\right)$ measures how well $f \in \mathcal{M}$ approximates f^{*}.
- Optimization: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C\left(f, f^{*}\right)$
- Generalization: Optimization procedure should address that f is to approximate f^{*} well on unknown data points.

Linear Regression

EXAMPLE: $\quad f: \mathbb{R} \rightarrow \mathbb{R}$

Perceptron

EXAMPLE: $\quad f: \mathbb{R}^{2} \rightarrow\{0,1\}$
Perceptron model

$$
\begin{align*}
f & \mathbb{R}^{2} & \longrightarrow\{0=\text { blue }, 1=\text { red }\} \\
\left(x_{1}, x_{2}\right) & \mapsto & \begin{cases}1 & x_{2}-x_{1}>0 \\
0 & x_{2}-x_{1} \leq 0\end{cases} \tag{1}
\end{align*}
$$

Supervised Learning

Summary

We need to specify:

- How to set up the data being used for training
- A model class \mathcal{M}, for example linear functions
- A cost function $C\left(f, f^{*}\right)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks f such that $C\left(f, f^{*}\right)$ is minimal, or very small
- Keep in mind that f is to perform well on previously unseen data

Supervised Learning

Summary

We need to specify:

- How to set up the data being used for training
- A model class \mathcal{M}, for example linear functions
- An optimization procedure that picks f such that $C\left(f, f^{*}\right)$ is minimal, or very small
- Keep in mind that f is to perform well on previously unseen data

Supervised Learning

Summary

We need to specify:

- How to set up the data being used for training
- A model class \mathcal{M}, for example linear functions
- A cost function $C\left(f, f^{*}\right)$ that evaluates the goodness of $f \in \mathcal{M}$
\rightarrow An optimization procedure that picks f such that $C\left(f, f^{*}\right)$ is minimal, or very small
- Keen in mind that f is to perform well on previously unseen data

SUPERVISED LEARNING

Summary

We need to specify:

- How to set up the data being used for training
- A model class \mathcal{M}, for example linear functions
- A cost function $C\left(f, f^{*}\right)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks f such that $C\left(f, f^{*}\right)$ is minimal, or very small

SUPERVISED LEARNING

Summary

We need to specify:

- How to set up the data being used for training
- A model class \mathcal{M}, for example linear functions
- A cost function $C\left(f, f^{*}\right)$ that evaluates the goodness of $f \in \mathcal{M}$
- An optimization procedure that picks f such that $C\left(f, f^{*}\right)$ is minimal, or very small
- Keep in mind that f is to perform well on previously unseen data

Supervised Learning

Notation

- The dataset is given by a design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$ where m is the number of data points and d is the number of features

SUPERVISED LEARNING

Notation

- The dataset is given by a design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$ where m is the number of data points and d is the number of features
- Each data point x_{i} (a row in \mathbf{X}) is assigned to a label y_{i} that reflects the true functional relationship $y_{i}=f^{*}\left(x_{i}\right)$, where further $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in V^{m}$ is the label vector.

Generalization

EnAbling Generalization: Data

Training, Test and Validation

- Split (\mathbf{X}, \mathbf{y}) into
- training data $\left(\mathbf{X}^{(\text {train })}, \mathbf{y}^{(\text {train })}\right)$
$>$ test data $\left(\mathbf{X}^{\text {(test) }}, \mathbf{y}^{\text {(test) }}\right)$
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
- Hyperparameters can refer to choosing subsets of \mathcal{M}. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
$\rightarrow\left(\mathbf{Y}\right.$ (test) $\left.\mathbf{y}^{\text {(test })}\right)$ are never touched during training.
\rightarrow The final goal is to minimize the cost on the test data.

EnAbling Generalization: Data

Training, Test and Validation

- Split (X, y) into
- training data $\left(\mathbf{X}^{(\text {train })}, \mathbf{y}^{(\text {train })}\right)$
- validation data $\left(\mathbf{X}^{(\mathrm{val})}, \mathbf{y}^{(\mathrm{val})}\right)$
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
\rightarrow Hyperparameters can refer to choosing subsets of \mathcal{M}. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
$-\left(\mathbf{Y}\right.$ (test) $\left.\mathbf{y}^{\text {(test })}\right)$ are never touched during training.
\rightarrow The final goal is to minimize the cost on the test data.

Enabling Generalization: Data

Training, Test and Validation

- Split (X, y) into
- training data $\left(\mathbf{X}^{(\text {train })}, \mathbf{y}^{(\text {train })}\right)$
- validation data $\left(\mathbf{X}^{(\mathrm{val})}, \mathbf{y}^{(\mathrm{val})}\right)$
- test data $\left(\mathbf{X}^{(\text {test })}, \mathbf{y}^{\text {(test) })}\right)$
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
\rightarrow Hyperparameters can refer to choosing subsets of \mathcal{M}. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
$\rightarrow\left(\mathbf{X}^{(\text {test })}, \mathbf{y}^{(\text {test })}\right)$ are never touched during training.
- The final goal is to minimize the cost on the test data.

Enabling Generalization: Data

Training, Test and Validation

- Split (\mathbf{X}, \mathbf{y}) into
- training data $\left(\mathbf{X}^{\text {(train) }}, \mathbf{y}^{(\text {train })}\right)$
- validation data $\left(\mathbf{X}^{(\text {val })}, \mathbf{y}^{(\text {val })}\right)$
- test data $\left(\mathbf{X}^{(\text {test })}, \mathbf{y}^{(\text {test })}\right)$
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
- Hyperparameters can refer to choosing subsets of \mathcal{M}. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
$\rightarrow\left(\mathbf{X}^{\text {(test })}, \mathbf{y}^{(\text {test })}\right)$ are never touched during training.
- The final goal is to minimize the cost on the test data.

Enabling Generalization: Data

Training, Test and Validation

- Split (\mathbf{X}, \mathbf{y}) into
- training data $\left(\mathbf{X}^{\text {(train) }}, \mathbf{y}^{\text {(train) })}\right.$
- validation data $\left(\mathbf{X}^{(\text {val })}, \mathbf{y}^{(\text {val })}\right)$
- test data $\left(\mathbf{X}^{(\text {test })}, \mathbf{y}^{(\text {test })}\right)$
- While training data is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and validation data in combination is for picking hyperparameters
- Hyperparameters can refer to choosing subsets of \mathcal{M}. For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
- $\left(\mathbf{X}^{(\text {test })}, \mathbf{y}^{(\text {test })}\right)$ are never touched during training.
- The final goal is to minimize the cost on the test data.

Enabling Generalization: Model

CApacity, Under- and Overfitting

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

- Choose a class of models that has the right capacity
- Capacity too large: overfitting

Enabling Generalization: Model

Capacity, Under- and Overfitting

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

- Choose a class of models that has the right capacity
- Capacity too large: overfitting
- Capacity too small: underfitting

Enabling Generalization: Cost Function

REGULARIZATION

Let $C\left(f, f^{*}\right)$ be the cost function. Let $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

- Usually, C refers to only known data points. That is, C evaluates as

$$
\begin{equation*}
C\left(f, f^{*}\right)=\sum_{i} C\left(f\left(x_{i}\right), y_{i}=f^{*}\left(x_{i}\right)\right) \tag{2}
\end{equation*}
$$

where x_{i} runs over all training data points.
\Rightarrow Add a regularization term to cost function, and choose f_{w} that
$C\left(f_{\mathbf{w}}, f^{*}\right)+\lambda \Omega(\mathbf{w})$
$\Rightarrow \lambda$ is a hyperparameter

Enabling Generalization: Cost Function

REGULARIZATION

Let $C\left(f, f^{*}\right)$ be the cost function. Let $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

- Usually, C refers to only known data points. That is, C evaluates as

$$
\begin{equation*}
C\left(f, f^{*}\right)=\sum_{i} C\left(f\left(x_{i}\right), y_{i}=f^{*}\left(x_{i}\right)\right) \tag{2}
\end{equation*}
$$

where x_{i} runs over all training data points.

- Add a regularization term to cost function, and choose f_{w} that yields minimal

$$
\begin{equation*}
C\left(f_{\mathbf{w}}, f^{*}\right)+\lambda \Omega(\mathbf{w}) \tag{3}
\end{equation*}
$$

- λ is a hyperparameter

Enabling Generalization: Cost Function

REGULARIZATION

- Prominent examples:
- L_{1} norm: $\Omega(\mathbf{w}):=\sum_{i}\left|w_{i}\right|$
- L_{2} norm: $\Omega(\mathbf{w}):=\sum_{i} w_{i}^{2}$
> Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- Prevents overfitting, vields better generalization

Enabling Generalization: Cost Function

Regularization

- Prominent examples:
- L_{1} norm: $\Omega(\mathbf{w}):=\sum_{i}\left|w_{i}\right|$
- L_{2} norm: $\Omega(\mathbf{w}):=\sum_{i} w_{i}^{2}$
- Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- Prevents overfitting, yields better generalization

Enabling Generalization: Cost Function

Regularization

- Prominent examples:
- L_{1} norm: $\Omega(\mathbf{w}):=\sum_{i}\left|w_{i}\right|$
- L2 norm: $\Omega(\mathbf{w}):=\sum_{i} w_{i}^{2}$
- Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- Prevents overfitting, yields better generalization

Enabling Generalization: Optimization

Early Stopping, Dropout

Optimization can be an iterative procedure.

- Early stopping: Stop the optimization procedure before cost function reaches an optimum on the training data.
- Dropout: Randomly fix parameters to zero, and optimize remaining parameters.

Prominent Supervised Learning Model Examples

Linear Regression

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^{m}$
- Model class: Let $\mathbf{w} \in \mathbb{R}^{d}$

$$
\begin{align*}
& \qquad f_{\mathbf{w}}=f(\mathbf{x} ; \mathbf{w}): \mathbb{R}^{d} \longrightarrow \mathbb{R} \\
& \mathbf{x} \longrightarrow \mathbf{w}^{T} \mathbf{x} \approx \sum_{j=1}^{d} w_{j} x_{j} \tag{4}\\
& \text { Remark: Note that the case } w^{T} x+b \text { can be treate } \\
& \text { special case to be included in } \mathcal{M}, \text { by augmenting vectors } x_{i}
\end{align*}
$$ by an entry 1 (think about this...)

- Cost function (recall $\left.y_{i}=f^{*}\left(\mathbf{x}_{i}\right)\right)$

Linear Regression

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^{m}$
- Model class: Let $\mathbf{w} \in \mathbb{R}^{d}$

$$
\begin{array}{cccc}
f_{\mathbf{w}}=f(\mathbf{x} ; \mathbf{w}): & \mathbb{R}^{d} & \longrightarrow & \mathbb{R} \tag{4}\\
\mathbf{x} & \mapsto & \mathbf{w}^{T} \mathbf{x}
\end{array}
$$

- Remark: Note that the case $\mathbf{w}^{T} \mathbf{x}+b$ can be treated as a special case to be included in \mathcal{M}, by augmenting vectors \mathbf{x}_{i} by an entry 1 (think about this...)

Linear Regression

- Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^{m}$
- Model class: Let $\mathbf{w} \in \mathbb{R}^{d}$

$$
\begin{array}{cccc}
f_{\mathbf{w}}=f(\mathbf{x} ; \mathbf{w}): & \mathbb{R}^{d} & \longrightarrow & \mathbb{R} \tag{4}\\
\mathbf{x} & \mapsto & \mathbf{w}^{T} \mathbf{x}
\end{array}
$$

- Remark: Note that the case $\mathbf{w}^{T} \mathbf{x}+b$ can be treated as a special case to be included in \mathcal{M}, by augmenting vectors \mathbf{x}_{i} by an entry 1 (think about this...)
- Cost function (recall $y_{i}=f^{*}\left(\mathbf{x}_{i}\right)$)

$$
\begin{equation*}
C\left(f, f^{*}\right):=\frac{1}{m}\left\|\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{m}\right)\right)-\mathbf{y}\right\|_{2}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right)^{2} \tag{5}
\end{equation*}
$$

Linear Regression

Optimization

- Solve for

$$
\begin{equation*}
\nabla_{\mathbf{w}} C\left(f_{\mathbf{w}}, f^{*}\right)=0 \tag{6}
\end{equation*}
$$

to achieve a minimum. This yields the normal equations

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{7}
\end{equation*}
$$

- Global optimum if $\mathbf{X}^{T} \mathrm{X}$ is invertible
- Do this on training data (so $\mathbf{X}=\mathbf{X}^{(\text {train })}, \mathbf{y}=\mathbf{y}^{(\text {train })}$) only. Hope that cost on test data is small.

Linear Regression

Optimization

- Solve for

$$
\begin{equation*}
\nabla_{\mathbf{w}} C\left(f_{\mathbf{w}}, f^{*}\right)=0 \tag{6}
\end{equation*}
$$

to achieve a minimum. This yields the normal equations

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{7}
\end{equation*}
$$

- Global optimum if $\mathbf{X}^{T} \mathbf{X}$ is invertible Hope that cost on test data is small.

Linear Regression

Optimization

- Solve for

$$
\begin{equation*}
\nabla_{\mathbf{w}} C\left(f_{\mathbf{w}}, f^{*}\right)=0 \tag{6}
\end{equation*}
$$

to achieve a minimum. This yields the normal equations

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{7}
\end{equation*}
$$

- Global optimum if $\mathbf{X}^{T} \mathbf{X}$ is invertible
- Do this on training data (so $\mathbf{X}=\mathbf{X}^{(\text {train })}, \mathbf{y}=\mathbf{y}^{(\text {(train })}$) only. Hope that cost on test data is small.

Normal EqUations

- Left: Data points, and the linear function $y=w_{1} x$ that approximates them best
- Right: Mean squared error (MSE) depending on w_{1}
- Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the perceptron

Normal EqUations

- Left: Data points, and the linear function $y=w_{1} x$ that approximates them best
- Right: Mean squared error (MSE) depending on w_{1}
- Remark on Perceptrons: Optimizing is different, but also supported by a very easy optimization scheme (the perceptron

Nearest Neighbor Classification

- Consider appropriate distance measure

$$
\begin{equation*}
D: \mathbb{R}^{d} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}_{+} \tag{8}
\end{equation*}
$$

- For unknown data point x, determine the closest given data point

$$
\mathbf{x}_{i^{*}}:=\operatorname{argmin}_{i}\left(D\left(\mathbf{x}, \mathbf{x}_{i}\right)\right)
$$

Nearest Neighbor Classification

- Consider appropriate distance measure

$$
\begin{equation*}
D: \mathbb{R}^{d} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}_{+} \tag{8}
\end{equation*}
$$

- For unknown data point \mathbf{x}, determine the closest given data point

$$
\begin{equation*}
\mathbf{x}_{i^{*}}:=\operatorname{argmin}_{i}\left(D\left(\mathbf{x}, \mathbf{x}_{i}\right)\right) \tag{9}
\end{equation*}
$$

- Predict label of \mathbf{x} as $y_{i^{*}}$

Support Vector Machines

- Realization: From (7), write

$$
\begin{equation*}
\mathbf{w}^{T} \mathbf{x}=\sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i}=\sum_{i=1}^{m} \alpha_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \tag{10}
\end{equation*}
$$

- Replace $\langle.,$.$\rangle by different kernel (i.e. scalar product) k(.,$.$) ,$ that is by computing $\langle\phi(),. \phi()$.$\rangle for appropriate \phi$
Seek α 's to maximize margin: still easy to optimize both for regression and classification!

Support Vector Machines

- Realization: From (7), write

$$
\begin{equation*}
\mathbf{w}^{T} \mathbf{x}=\sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i}=\sum_{i=1}^{m} \alpha_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \tag{10}
\end{equation*}
$$

- Replace $\langle.,$.$\rangle by different kernel (i.e. scalar product) k(.,$.$) ,$ that is by computing $\langle\phi(),. \phi()$.$\rangle for appropriate \phi$

Support Vector Machines

- Realization: From (7), write

$$
\begin{equation*}
\mathbf{w}^{T} \mathbf{x}=\sum_{i=1}^{m} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i}=\sum_{i=1}^{m} \alpha_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle \tag{10}
\end{equation*}
$$

- Replace $\langle.,$.$\rangle by different kernel (i.e. scalar product) k(.,$.$) ,$ that is by computing $\langle\phi(),. \phi()$.$\rangle for appropriate \phi$
Seek α 's to maximize margin: still easy to optimize both for regression and classification!

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- A perceptron divides the space into two half spaces
- Half spaces capture the two different classes
- Normal vector alternative description of half space

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- What to do if data cannot be separated (is non-separable)?

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?

Perceptron Revisited

- Several half spaces (normal vectors) divide training data
- Question: any half space optimal, in a sensibly defined way?
- What to do if data cannot be separated (is non-separable)?

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin
- If separable, maximize distance between hyperplane and closest data points
- If not sepamable, minimize loss function that

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that

Support Vector Machines: Motivation

- Support vector machines (SVM's) address to choose most reasonable half space
- SVM's choose half space that maximizes the margin
- If separable, maximize distance between hyperplane and closest data points
- If not separable, minimize loss function that
- penalizes misclassified points
- penalizes points correctly classified by too close to hyperplane (to a lesser extent)

Separable Data

- Goal: Select hyperplane $\mathbf{w} \cdot \mathbf{x}+b=0$ that maximizes distance γ
- Intuition: The further away data from hyperplane, the more certain their classification
- Increases chances to correctly classify unseen data (to generalize)

SEparable Data

- Goal: Select hyperplane $\mathbf{w} \cdot \mathbf{x}+b=0$ that maximizes distance γ
- Intuition: The further away data from hyperplane, the more certain their classification
- Increases chances to correctly classify unseen data (to generalize)

Support Vectors

- Two parallel hyperplanes at distance γ touch one or more of support vectors
\Rightarrow In most cases, d-dimensional data set has $d+1$ support vectors (but there can be more)

Support Vectors

- Two parallel hyperplanes at distance γ touch one or more of support vectors
- In most cases, d-dimensional data set has $d+1$ support vectors (but there can be more)

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{11}
\end{equation*}
$$

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{11}
\end{equation*}
$$

Issue

- Replacing \mathbf{w} and b by $2 \mathbf{w}$ and $2 b$ yields $y_{i}\left(2 \mathbf{w} \mathbf{x}_{i}+2 b\right) \geq 2 \gamma$
- There is no optimal γ

Problem Formulation: First Try

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ be a training data set, where $\mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,+1\}, i=1, \ldots, n$.

Problem: By varying \mathbf{w}, b, maximize γ such that

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq \gamma \quad \text { for all } i=1, \ldots, n \tag{11}
\end{equation*}
$$

Issue

- Replacing \mathbf{w} and b by $2 \mathbf{w}$ and $2 b$ yields $y_{i}\left(2 \mathbf{w} \mathbf{x}_{i}+2 b\right) \geq 2 \gamma$
- There is no optimal γ

Problem badly formulated try harder!

Problem Formulation: Solution

- Data set $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ as before
- Solution: Impose additional constraint: consider only combinations $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that for support vectors \mathbf{x}

$$
\begin{equation*}
y_{i}(\mathbf{w} \mathbf{x}+b) \in\{-1,+1\} \tag{12}
\end{equation*}
$$

- Good Formulation: By varying \mathbf{w}, b, maximize γ such that
$d\left(X_{i}, H\right) \geqslant \gamma \quad$ for all $i=1, \ldots, n$
and (12) applies $\begin{aligned} & \text { where } d\left(x_{i}, H\right):=\min _{\pi}\{d(x, x) \mid w x+b=0\} \\ & \text { is the distance of } x_{i} \text { to the hepeeplase } \\ & H:=\{* \mid \text { wet }\end{aligned}$

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (12),(13)
$\Rightarrow \mathrm{x}_{2}$ is support vector on lower hyperplane, so by (12), $\mathbf{w} \mathbf{x}_{2}+b=-1$
- Let \mathbf{x}_{1} be the nrojection of \mathbf{x}_{2} onto upper hyperplane:

$$
\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (12),(13)
- \mathbf{x}_{2} is support vector on lower hyperplane, so by (12), $\mathbf{w} \mathbf{x}_{2}+b=-1$
- Let x_{1} be the projection of x_{2} onto upper hyperplane:

Alternative Problem Formulation I

- \mathbf{w}, b, γ determined according to (12),(13)
- \mathbf{x}_{2} is support vector on lower hyperplane, so by (12), $\mathbf{w x}_{2}+b=-1$
- Let \mathbf{x}_{1} be the projection of \mathbf{x}_{2} onto upper hyperplane:

$$
\begin{equation*}
\mathbf{x}_{1}=\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|} \tag{14}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{15}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{15}
\end{equation*}
$$

Substituting (14) into (15) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{16}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{15}
\end{equation*}
$$

Substituting (14) into (15) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{16}
\end{equation*}
$$

By further regrouping, we obtain

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{2}+b+2 \gamma \frac{\mathbf{w w}}{\|\mathbf{w}\|}=1 \tag{17}
\end{equation*}
$$

Alternative Problem Formulation II

That is, further, \mathbf{x}_{1} is on the hyperplane defined by $\mathbf{w} \mathbf{x}+b=1$, meaning

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{1}+b=1 \tag{15}
\end{equation*}
$$

Substituting (14) into (15) yields

$$
\begin{equation*}
\mathbf{w} \cdot\left(\mathbf{x}_{2}+2 \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+b=1 \tag{16}
\end{equation*}
$$

By further regrouping, we obtain

$$
\begin{equation*}
\mathbf{w} \mathbf{x}_{2}+b+2 \gamma \frac{\mathbf{w w}}{\|\mathbf{w}\|}=1 \tag{17}
\end{equation*}
$$

Because $\mathbf{w w}=\|\mathbf{w}\|^{2}$, by further regrouping, we conclude that

$$
\begin{equation*}
\gamma=\frac{1}{\|\mathbf{w}\|} \tag{18}
\end{equation*}
$$

Alternative Problem Formulation III

Let dataset $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ be as before.
EqUiValent Problem Formulation:
By varying \mathbf{w}, b, minimize $\|\mathbf{w}\|$ subject to

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq 1 \quad \text { for all } i=1, \ldots, n \tag{19}
\end{equation*}
$$

Alternative Problem Formulation III

Let dataset $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ be as before.
Equivalent Problem Formulation:
By varying \mathbf{w}, b, minimize $\|\mathbf{w}\|$ subject to

$$
\begin{equation*}
y_{i}\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq 1 \quad \text { for all } i=1, \ldots, n \tag{19}
\end{equation*}
$$

Optimizing under Constraints

- Topic is broadly covered
- Many packages can be used
- Target function $\sum_{i} w_{i}^{2}$ quadratic; well manageable

EXAMPLE

See Example 12.8
in mnds.org
\downarrow
see link is last slide

Non Separable Data Sets

Situation:

- Some points misclassified, some too close to boundary bad points
- Non separable data: any choice of \mathbf{w}, b yields bad points

Non Separable Data Sets

Situation:

- Some points misclassified, some too close to boundary bad points
- Non separable data: any choice of \mathbf{w}, b yields bad points

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:
- Determine appropriate penalties for bad points
- Solve original problem, by involving penalties

Non Separable Data: Motivation

- Situation: No hyperplane can separate the data points correctly
- Approach:
- Determine appropriate penalties for bad points
- Solve original problem, by involving penalties

Non Separable Data: Motivation II

Let $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots n$ be training data, where

- $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)$,
- $y_{i} \in\{-1,+1\}$
and let $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right)$.

Non Separable Data: Motivation II

Let $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots n$ be training data, where

- $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)$,
- $y_{i} \in\{-1,+1\}$
and let $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right)$.
Minimize the following function:

$$
\begin{equation*}
f(\mathbf{w}, b)=\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{20}
\end{equation*}
$$

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

\rightarrow Minimizing $||w||$ equivalent to minimizing monotone function of $||w|$ ne Minimizing f seeks minimal $\|\mathbf{w}\|$

- Vectors w and training data balaneed in terms of basic units:

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
\rightarrow Vectors w and training data balanced in terms of basic units:

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter
- Large C: minimize misclassified points, but accept narrow margin

Non Separable Data: Motivation II

$$
f(\mathbf{w}, b)=\underbrace{\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}}_{\text {Seek minimal }\|\mathbf{w}\|}+\underbrace{C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}}_{\text {Bad point penalty }}
$$

- Minimizing $\|\mathbf{w}\|$ equivalent to minimizing monotone function of $\|\mathbf{w}\|$ \leftrightarrow Minimizing f seeks minimal $\|\mathbf{w}\|$
- Vectors \mathbf{w} and training data balanced in terms of basic units:

$$
\frac{\partial\left(\|\mathbf{w}\|^{2} / 2\right)}{\partial w_{i}}=w_{i} \quad \text { and } \quad \frac{\partial\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)}{\partial w_{i}}=x_{i j}
$$

- C is a regularization parameter
- Large C: minimize misclassified points, but accept narrow margin
- Small C: accept misclassified points, but widen margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{21}
\end{equation*}
$$

$\rightarrow L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{21}
\end{equation*}
$$

- $L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
\begin{equation*}
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\} \tag{21}
\end{equation*}
$$

- $L\left(\mathbf{x}_{i}, y_{i}\right)=0$ iff \mathbf{x}_{i} on the correct side of hyperplane with sufficient margin
- The worse \mathbf{x}_{i} is located the greater $L\left(\mathbf{x}_{i}, y_{i}\right)$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{22}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{22}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Reflecting:

- If \mathbf{x}_{i} is on right side with suffcient margin: nothing to be done
- Otherwise adjust w_{j} to have x_{i} better placed

Non Separable Data: Hinge Function

Let the hinge function L be defined by

$$
L\left(\mathbf{x}_{i}, y_{i}\right)=\max \left\{0,1-y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right)\right\}
$$

Partial derivatives of hinge function:

$$
\frac{\partial L}{\partial w_{j}}= \begin{cases}0 & \text { if } y_{i}\left(\sum_{j=1}^{d} w_{j} x_{i j}+b\right) \geq 1 \tag{22}\\ -y_{i} x_{i j} & \text { otherwise }\end{cases}
$$

Reflecting:

- If \mathbf{x}_{i} is on right side with suffcient margin: nothing to be done
- Otherwise adjust w_{j} to have \mathbf{x}_{i} better placed

General / Further Reading

Literature

- Deep Learning, Chapter 5:
https://www.deeplearningbook.org/
- Mining Massive Datasets, Chapter 12, Section 3: http: / / infolab.stanford.edu/~ullman/mmds/ch12.pdf

