
Learning in Big Data Analytics
Lecture 6

Alexander Schönhuth

Bielefeld University
December 22, 2020

Direct Discovery of Communities

INTRODUCTION

I So far, we partitioned graphs into disjoint communities

I But communities might be overlapping

I Solution: Determine communities as (induced) subgraphs of a
certain type

I Subgraphs should contain unusually large amount of edges

I Will treat two types briefly here:
I Cliques
I Complete bipartite subgraphs

FINDING CLIQUES

DEFINITION [INDUCED SUBGRAPH]
Let G = (V,E) be a graph. A subgraph C = (V′ ⊂ V,E′ ⊂ E) is induced iff

(v′,w′) ∈ E implies (v′,w′) ∈ E′

for any v′,w′ ∈ V′.

DEFINITION [CLIQUE]
Let G = (V,E) be a graph.

I An induced subgraph C = (V′,E′) is called a clique iff any pair of nodes
in C is connected by an edge.

I A clique C = (V′,E′) is maximal iff extending the clique by any node
and its edges implies that the clique property no longer holds.

COMMUNITIES AS CLIQUES

I Possible idea: Determine communities as maximal cliques

I Caveat: The number of maximal cliques in a graph may be
exponential in the number of nodes

I So, listing all maximal cliques is a computationally demanding
problem

I Nevertheless, identifying communities as clique like
arrangements is popular

COMPLETE BIPARTITE GRAPHS

DEFINITION [(COMPLETE) BIPARTITE GRAPHS]
A graph G = (V,E) with vertices V and edges E is referred to as bipartite iff

I there are V1,V2 ⊂ V such that

V = V1 ∪̇ V2 and E ⊂ (V1 × V2)

I A bipartite graph G = (V,E) is complete iff

V = V1 ∪̇ V2 and E = (V1 × V2)

that is iff each node from V1 is connected with each node from V2

I A complete bipartite graph where |V1| = s, |V2| = t is referred to as Ks,t

I A complete bipartite graph is also referred to as biclique

COMPLETE BIPARTITE GRAPHS AND COMMUNITIES

I Strategy: Seek to discover all sufficiently large bicliques

I Treat them as “nuclei” (or seeds) of communities

I Theoretical Advantage over Cliques: While it is not possible to
guarantee the existence of large cliques for graphs with many
edges, one can guarantee the existence of large bicliques

FINDING COMPLETE BIPARTITE GRAPHS

Frequent Itemset Mining Problem

I Let G = (V,E) on V = V1 ∪̇ V2 be a (large) bipartite graph

I Items are nodes from V1

I Baskets are nodes from V2

I Items in baskets are nodes from V1 connected to basket node

I Ks,t in G is itemset of size s that appears in t baskets

I So mining for frequent itemsets at threshold t dicovers all Ks,t

The Graph Affiliation Model

OVERLAPPING COMMUNITIES

Subgraph from Facebook
Adopted from mmds.org

I Observation: Communities in social networks can overlap

I Graph partitioning does not help in these cases

I Would like to have a statistical interpretation of network data

mmds.org

NONOVERLAPPING VERSUS OVERLAPPING

COMMUNITIES

Left: Nonoverlapping communities
Right: Overlapping communities

Adopted from mmds.org

I Communities may overlap or not
I Issue: How to determine communities correctly?

mmds.org

AFFILIATION GRAPH MODEL: INTRODUCTION

Networks and their adjacency matrices
Adopted from mmds.org

I Left: No overlap, adjacency matrix sparse across communities
I Middle: Loose overlap, adjacency matrix less sparse in shared part
I Right: Tight overlap, adjacency matrix dense in shared part

mmds.org

COMMUNITY DISCOVERY: GOAL

Revealing (overlapping) communities
Adopted from mmds.org

I Goal: Discover communities correctly

I Regardless of whether they overlap or not

Determine the statistically most likely community structure

mmds.org

AFFILIATION GRAPH MODEL: INTRODUCTION

I Issue: Statistical control over community structure of a network
I Idea: Design generative probability distribution
I Given a number of nodes, this generative distribution generates edges

I The generative distribution represents a particular community
structure

I The distribution knows about nodes belonging to communities
I It generates more edges within communities
I It generates less edges between communities

AFFILIATION GRAPH MODEL: INTRODUCTION

I The generative distribution represents community structures
I The distribution knows about nodes belonging to communities
I It generates more edges within communities
I It generates less edges between communities

Distribution representing a community structure generating network
Adopted from mmds.org

mmds.org

AFFILIATION GRAPH MODEL: INTRODUCTION

Distribution representing a community structure (left) generating network (right)
Adopted from mmds.org

I We can generate networks when knowing community structure

I But: We would like to determine the community structure when
knowing the network

Isn’t that exactly the opposite?

mmds.org

GENERATIVE DISTRIBUTIONS

We can do this: generating network from distribution...
Adopted from mmds.org

...but we want this: inferring distribution from network
Adopted from mmds.org

mmds.org
mmds.org

GENERATIVE DISTRIBUTIONS: MAXIMUM

LIKELIHOOD INFERENCE

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation

I Let Θ be a parameterized class of probability distributions that generate
networks

I We identify the different distributions with the different parameterizations
+ Formally not 100% correct, but doesn’t matter here

I Let P(N | θ) be the probability that distribution θ ∈ Θ generates
network N

mmds.org

GENERATIVE DISTRIBUTIONS: MAXIMUM

LIKELIHOOD INFERENCE

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation
I Let P(N | θ) be the probability that distribution θ ∈ Θ generates

network N
I Maximum likelihood estimation: Determine distribution θ̂ that generated

N with greatest likelihood:

θ̂ := arg max
θ∈Θ

P(N | θ) (1)

I This computes most reasonable distribution θ̂ for network N

mmds.org

AFFILIATION GRAPH MODEL: DEFINITION I

I An AGM θ generates a network N = (V,E) by adding edges E to
a given set of nodes V

I For u, v ∈ V, edge (u, v) is generated with probability Pθ((u, v))

I Pθ((u, v)) depends on the parameters θ

I Recall that θ specifies community structure

So, what exactly is θ supposed to be?

AFFILIATION GRAPH MODEL: PARAMETERS

I C, as a set of communities
I M ∈ {0, 1}C×V , specifying assignment of nodes v ∈ V to communities

C ∈ C, where

MC,v =

{
1 v belongs to C
0 otherwise

(2)

I M specifies “affiliations” of nodes v ∈ V
I Note that one can vary C, as a parameter, but not V

I (pC)C∈C as probabilities to generate edges (u, v) because u, v ∈ C
I Summary: A particular AGM θ corresponds to

θ = (C,M, (pC)C∈C) (3)

AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Let Mu,Mv ⊂ C be the subsets of communities that contain u and v,
respectively

I Existence of communities that contain both u, v means

Mu ∩ Mv 6= ∅

I Memberships in different communities have no influence on each other
I That is, we assume statistical independence

AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Statistical independence is expressed by∏
C∈Mu∩Mv

(1− pC)

as probability of no edge (u, v) in any community C ∈ Mu ∩Mv

I Hence, the probability to generate (u, v) is

1−
∏

C∈Mu∩Mv

(1− pC) (4)

Done? No: What about Mu ∩ Mv = ∅?

AFFILIATION GRAPH MODEL: Pθ((u, v))

No C containing both u, v

I For Mu ∩ Mv = ∅, computing (4) yields (empty product is 1)

1−
∏
C∈∅

(1− pC) = 1− 1 = 0

I No edges across communities makes no sense
I Let ε > 0 be small; we generate an edge (u, v) with probability

Pθ((u, v)) = ε if Mu ∩ Mv = ∅

AFFILIATION GRAPH MODEL: Pθ((u, v))

AFFILIATION GRAPH MODEL (AGM)

I An edge (u, v) is generated with probability

Pθ((u, v)) =

{
1−

∏
C∈Mu∩Mv

(1− pC) Mu ∩ Mv 6= ∅
ε Mu ∩ Mv = ∅

(5)

I Edges (u, v) are generated independently from one another
I Overall: The probability Pθ(E) to generate edges E given AGM θ

computes as

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (6)

where Pθ((u, v)) are computed following (5), with θ = (C,M, pC)
determining pC and Mu,Mv and so on.

AFFILIATION GRAPH MODEL: OVERALL PROBABILITY

AFFILIATION GRAPH MODEL (AGM)

I The probability Pθ(E) to generate E given θ is

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (7)

I Reminder: For a given network N = (V,E), the goal is to determine

θ̂ := arg max
θ∈Θ

Pθ(E)

I That is, we need to vary θ = (C,M, pC) until Pθ(E) is maximal

How to systematically vary θ = (C,M, pC)?

COMPUTING THE MLE θ̂

ISSUES

I Search space of combinations of
I Communities C,
I Assignments of nodes to communities M, and
I Probabilities pC for communities

tends to be huge
I Concise formulas of (7) for Pθ(E) as function of θ too difficult
I Analytical solution for determining θ̂ := arg maxθ∈Θ Pθ(E) not

available
I Moreover, parameters are both discrete (C,M) and continuous ((pC)C∈C)

COMPUTING THE MLE θ̂

APPROACH

1. Pick initial set of parameters θ0

2. Vary θ such that Pθ(E) iteratively increases

3. Vary C or M first

+ Partial derivates of Pθ(E) wrt. pC computable on fixed C,M

4. Determine optimal (pC)C∈C , e.g. by gradient descent

5. Keep change if Pθ(E) has increased, discard otherwise

COMPUTING THE MLE θ̂

ITERATIVE VARIATIONS OF C,M

I Varying M:
I Delete node from community, i.e. for MC,v = 1, set MC,v = 0
I Add node to community, i.e. for MC,v = 0, set MC,v = 1

I Varying C:
I Merge two communities
I Split community
I Delete community
I Add new community, with initial random selection of members

COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Instead of MC,v ∈ {0, 1}, allow any real-numbered MC,v ≥ 0

I For (u, v) to be generated because of u, v ∈ C, let

Pθ((u, v)) = 1− e−MC,uMC,v (8)

be the individual probability

I Proceeding exactly as before, we obtain

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v) 6∈E

e−
∑

C MC,uMC,v (9)

COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Probability for edges E:

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v)6∈E

e−
∑

C MC,uMC,v (10)

I On fixed communities, include M in gradient descent (or
related) optimization step

I Advantages:
I Only one gradient descent run necessary
I Less prone to get stuck in unfavorable local optima

I If necessary, add or delete communities, and re-run

GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, Sections 10.3, 10.5

http://infolab.stanford.edu/˜ullman/mmds/
ch10.pdf

http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

