Learning in Big Data Analytics Lecture 5

Alexander Schönhuth

Bielefeld University December 15, 2020

Social Networks as Graphs

SOCIAL NETWORKS: INTRODUCTION

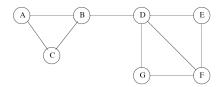
BASIC EXAMPLES

► Facebook, Twitter, Google+

DEFINING PROPERTIES

- Collection of entities participating in network
 - Usually people, but other entities conceivable
- There is a relationship between the entities
 - Being friends is frequent relationship
 - Relationship can be of 0-1 type, or weighted
- Assumption of nonrandomness or locality
 - Hard to formalize, intuition is that relationships tend to cluster
 - ► If entity A is related with both B and C, B and C are related with larger probability

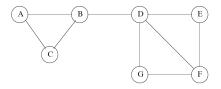
SOCIAL NETWORK GRAPHS: ENTITIES AND RELATIONSHIPS



Adopted from mmds.org

- ► *Entities:* Nodes A to G
- Relationships: Represented by edges between nodes
 - ► *Example:* A is "friends" with B and C

SOCIAL NETWORK GRAPHS: LOCALITY



- ► Locality:
 - There are 9 out of 21 possible edges: $\frac{9}{21} = 0.429$
 - ► Given nodes *X*, *Y*, *Z* such that there are edges (*X*, *Y*), (*Y*, *Z*), random occurrence of (*X*, *Z*) is $\frac{7}{19} = 0.368$
 - ► However, across all pairs of existing edges (X, Y), (Y, Z), probability that (X, Z) exists is ⁹/₁₆ = 0.563
 - Network exhibits locality

SOCIAL NETWORKS: EXAMPLES

► Telephone Networks:

- ► *Nodes* are phone numbers, *edges* exist if one number called another
- *Edge weights:* Number of calls (within certain period of time)
- Communities: Groups of friends, members of a club, people working at same company
- ► Email Networks:
 - ▶ Nodes are email addresses, edges indicate exchange of emails
 - Edge directionality may matter, so graph with directed edges
 - Communities: Similar to telephone networks

SOCIAL NETWORKS: EXAMPLES

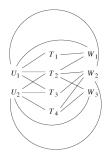
► Collaboration Networks:

- Nodes e.g. represent authors, edges indicate working on same document
- Alternatively: nodes represent documents, edges indicate that identical author contributed
- Communities: Groups interested in / working on same subjects; documents sharing related content

► Other:

- Information networks: Documents, web graphs, patents
- ▶ Infrastructure networks: Roads, planes, water pipes, power grids
- Biological networks: Genes, proteins, drugs
- ► Co-purchasing networks: E.g. Gropon

SEVERAL TYPES OF NODES



Adopted from mmds.org

EXAMPLES

 Figure: Users (U) put tags (T) on documents (D): tri-partite network

► Put documents and authors into one bi-partite network

SOCIAL NETWORKS: TOPICS

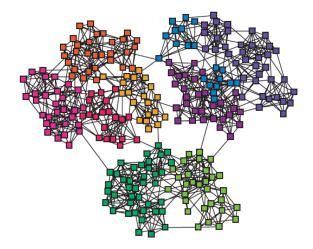
- Clustering, Betweenness & Girvan-Newman Algorithm (today)
- Direct Discovery of Communities & the Graph Affiliation Model (planned for December 22)
- Counting Triangles (planned for January 5)

Clustering Social Networks

CLUSTERING SOCIAL NETWORKS: INTRODUCTION

- An important aspect of social networks are *communities*
- Communities reveal themselves as groups of nodes that share unusually many edges
- Clustering social networks relates to the discovery of such communities

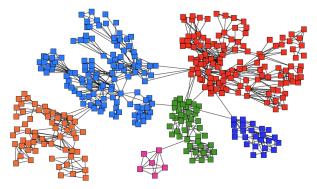
COMMUNITIES



Differently Colored Communities in Social Network

Adopted from mmds.org

CLUSTERED NETWORK



Differently Colored Clusters in Social Network

Adopted from mmds.org

DISTANCE MEASURES IN SOCIAL NETWORKS

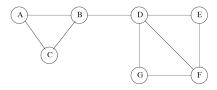
- Standard clustering techniques work with distance measures
- Distance measures are not obvious to define in social networks
 - Let $x, y \in V$ be two nodes in a social network G = (V, E). The measure

$$d(x,y) = \begin{cases} 0 & (x,y) \in E\\ 1 & (x,y) \notin E \end{cases}$$

violates the triangle inequality, hence is no distance measure

- ▶ Exchanging 0 with 1, and 1 with ∞ does not help
- But other binary-valued measures (e.g. 1 and 1.5) agree with triangle inequality
- ► *But:* Additional issues apply

SOCIAL NETWORKS: CLUSTERING ISSUES



Communities: A-B-C and D-E-F-G

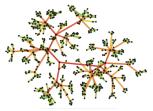
- ► Hierarchical Clustering: Randomly picks closest nodes/clusters
- Distance between clusters: distance between closest points
- ► As soon as clusters are joined on B and D, clusters not as desired
- Summary: Standard clustering techniques difficult/impossible to sensibly implement

Betweenness

Idea: Identify edges that are least likely to be within community DEFINITION [BETWEENNESS] The *betweenness* of an edge (a, b) is

- the number of pairs of nodes (x, y) such that (a, b) makes part of the *shortest path* leading from x to y
- ► If for (*x*, *y*) there are several shortest paths, (*a*, *b*) is credited the fraction of shortest paths leading through (*a*, *b*) when computing its betweenness

Betweenness



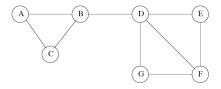
Telephone network: Links between communities have great betweenness

Adopted from mmds.org

Explanation

- ▶ High betweenness means that (*a*, *b*) is a bottleneck for shortest paths
- ► If nodes (*a*, *b*) lie within community, there are too many options for shortest paths to circumvent (*a*, *b*) (so (*a*, *b*) gets credited only small fractions)

BETWEENNESS: EXAMPLE



• (B, D) has the greatest betweenness, 12

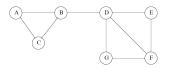
▶ It is on any shortest path between *A*, *B*, *C* and *D*, *E*, *F*, *G*

- (D, F) has betweenness 4
 - ▶ It lies on all shortest paths between *A*, *B*, *C*, *D* and *F*

CALCULATING BETWEENNESS

ALGORITHMIC PRINCIPLE

- Visit each node X once
- Compute shortest paths from *X* to any other node *Y*
- ► To visit nodes *Y* from *X*, perform breadth-first search (BFS)



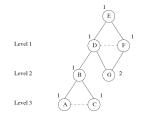
Social Network; consider BFS from E

Adopted from mmds.org

CALCULATING BETWEENNESS

Algorithmic Principle

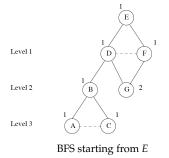
- ► Visit each node *X* once
- Compute shortest paths from *X* to any other node *Y*
- ► To visit nodes *Y* from *X*, perform breadth-first search (BFS)



BFS starting from *E* on social network from slide before

Adopted from mmds.org

CALCULATING BETWEENNESS

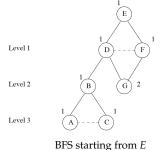


Adopted from mmds.org

INTUITION / NOTATION

- Length of shortest path from X to Y: level of BFS starting at X
- Edges within BFS level cannot be part of shortest paths from X
- Edges between different levels are referred to as DAG (directed acyclic graph) edges
- DAG edges are on at least one shortest path leaving from X

CALCULATING BETWEENNESS



Adopted from mmds.org

EXAMPLE NOTATION

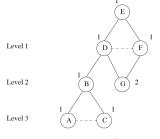
- ► Solid edges = DAG edges: e.g. (D, B), (E, F)
- Dashed edges = within level: e.g. (D, F), (A, C)
- ► For DAG edge (*Y*, *Z*) where *Y* is closer to root *X* than *Z*:
 - ► *Y* is said to be the *parent*
 - ► Z is said to be the *child*

CALCULATING BETWEENNESS

TWO STAGES

- Labeling: For each node, assign number of shortest paths from root to that node
 - Proceed from root to leaves in BFS order
- Crediting: For each edge, compute contribution of shortest paths from root to betweenness of that edge
 - Need to compute credits for nodes as well
 - Proceed from leaves to root, bottom-up

CALCULATING BETWEENNESS

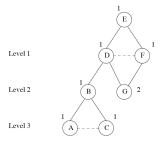


BFS starting from *E* Adopted from mmds.org

LABELING NODES

- Label each node by the number of shortest path to the root
- ► Start by labeling the root with 1
- Top-down, label each node by the sum of labels of each parents

CALCULATING BETWEENNESS



BFS starting from E: Labeling

Adopted from mmds.org

EXAMPLE LABELING

- ► Label the *root E* with 1
- Level 1: Each D and F have only E as parent; label both with 1
- ► Level 2:
 - *B* has only *D* as parent, label with 1
 - ► *G* has parents *D* and *F*, label with 2
- Level 3: Both A, C have only B as parent, so both are labeled with 1

CALCULATING BETWEENNESS

CREDITING NODES

- ► Credit each *leaf* with 1
- Each *non-leaf node* v gets credit

$$1 + \sum_{e \in \mathcal{D}(v)} c(e) \tag{1}$$

where $\mathcal{D}(v)$ are the DAG edges leaving from v, and c(e) is the credit of an edge e

How to credit edges?

CALCULATING BETWEENNESS

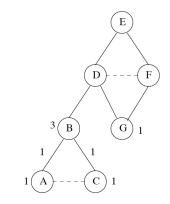
CREDITING EDGES

- ▶ Let u_j, j = 1, ..., k be the parents of w; so (u_j, w) are the DAG edges entering w
- ► Let N_j, j = 1, ..., k be the number of shortest paths running through edges (u_j, w)
- Let c(w) be the credit of w
- We compute the credit of (u_i, w) as

$$c(u_i, w) := c(w) \times \frac{N_i}{\sum_{j=1}^k N_j}$$
⁽²⁾

▶ Note that *N_j* agrees with the *label* of *u_j*

CALCULATING BETWEENNESS



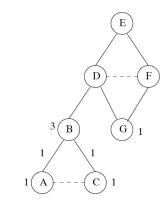
Crediting Nodes and Edges in Level 3 and 2

Adopted from mmds.org

EXAMPLE CREDITING

- Level 3 Nodes: Credit each of nodes A and C with 1
- ► Level 2-3 Edges: Both A and C have only one parent, so full credit 1 is assigned to both (B, A) and (B, C)

CALCULATING BETWEENNESS



Crediting Nodes and Edges in Level 3 and 2

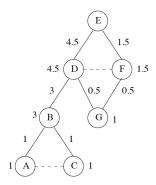
Adopted from mmds.org

EXAMPLE CREDITING

Level 2 Nodes:

- ► *G* is a leaf, so gets credit 1
- ▶ B is not a leaf, so gets credit 1 + sum of credits 1 of DAG edges (B, A), (B, C) leaving from it: credit 3 overall
- Intuitively, credit 3 for *B* refers to all shortest paths from *E* to *A*, *B*, *C* going through *B*.

CALCULATING BETWEENNESS



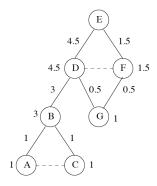
Crediting Nodes and Edges Adopted from mmds.org

EXAMPLE CREDITING

Level 1-2 Edges:

- ▶ B has only one parent, D, so the edge (D, B) gets all of B's credit
- ► (D, G), (F, G): Both D, F have label (not credit!) 1. So we credit both (D, G), (F, G) with 1/(1+1) = 0.5
- *Example:* If labels of *D* and *F* had been 3 and 5, the credit of (D, G) would be 3/(3+5) = 3/8 and that of (F, G) would be 5/8.

CALCULATING BETWEENNESS



Crediting Nodes and Edges Adopted from mmds.org EXAMPLE CREDITING

Level 1 Nodes / Edges:

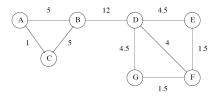
- D gets credit 1 + credits of (D, B), (D, G) = credit 4.5 overall
- ► *F* gets credit 1 + credit of (*F*, *G*) = credit 1.5 overall
- Edges (E, D), (E, F) receive credits of D, F respectively, because D, F each have only one parent

Summary: Credit on each edge is contribution to betweenness of that edge to shortest paths from *E*

SUMMARY

COMPLETING THE ALGORITHM

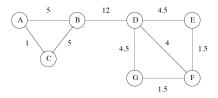
- ► Repeat the calculation illustrated for *E* for every other node
- ► Sum up the contributions for each edge across different roots
- Divide each edge weight by 2: each shortest path is counted twice, with each of its end points as root



Betweenness Scores

Adopted from mmds.org

FINDING COMMUNITIES WITH BETWEENNESS

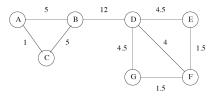


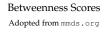
Betweenness Scores Adopted from mmds.org

COMPUTING COMMUNITIES: PRINCIPLE

- Remove edges in decreasing order of betweenness
- Stop at reasonably chosen threshold
- Communities are the resulting connected components

FINDING COMMUNITIES WITH BETWEENNESS





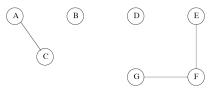
COMPUTING COMMUNITIES: EXAMPLE THRESHOLD 4

- First, remove (B, D): communities $\{A, B, C\}, \{D, E, F, G\}$
- ► Second, remove (A, B), (B, C): communities $\{A, C\}, \{B\}, \{D, E, F, G\}$
- ▶ Third, remove (D, E), (D, G): communities $\{A, C\}, \{B\}, \{D, E, F, G\}$
- Last, remove (D, F): communities $\{A, C\}, \{B\}, \{D\}, \{E, F, G\}$

FINDING COMMUNITIES WITH BETWEENNESS

Computing Communities: Example Threshold 4

- First, remove (B, D): communities $\{A, B, C\}, \{D, E, F, G\}$
- ► Second, remove (A, B), (B, C): communities $\{A, C\}, \{B\}, \{D, E, F, G\}$
- ▶ Third, remove (D, E), (D, G): communities $\{A, C\}, \{B\}, \{D, E, F, G\}$
- Last, remove (D, F): communities $\{A, C\}, \{B\}, \{D\}, \{E, F, G\}$



Final Communities

Adopted from mmds.org

GENERAL / FURTHER READING

Literature

Mining Massive Datasets, Sections 10.1, 10.2 http://infolab.stanford.edu/~ullman/mmds/ ch10.pdf

