
Bielefeld University
Faculty of Technology

Genome Data Science
Dr. Daniel Dörr

Programming

Summer 2020

Exercises

Number 02, Submission Deadline: May 2, 2020

1. String formatting. Often, computational results are reported in form of text, (6 P)
where several pieces of information are composed into a single sentence, e.g.: “The
sum of 4 + 10 + 28 is 42”. Python provides a convenient way of constructing such
strings through the use of place holders, as shown here by two examples:

a = 4

b = 10

c = 28

first example

my_string = ' The sum of {} + {} + {} is {} ' .format(a, b, c, a + b + c)

print(my_string)

second example (notice the leading "f" in front ot the string !)

my_string2 = f ' The sum of {a} + {b} + {c} is {a + b + c} '
print(my_string2)

Read the “Guide to the Newer Python String Format Techniques” at https://

realpython.com/python-formatted-output/ to inform yourself about the format()
function and f-strings.

(a) Find the formatting instruction (using the format() function) that produced
the following textual output for the numbers 12, 2947, and 60947.651:

 12

 2,947

60,948

Make sure to use the same formatting instruction to print the requested text
for each of the numbers.

(b) Explain in detail the formatting instructions that have been used in the follow-
ing statement:

'{{ {1:2f}-{0:010.2f}:{1:b} }}'.format(1234.5678, 23)

(c) Provide a meaningful output formatting for the following list of books using
f-strings:

books = [

{ ' title ' : ' To Kill a Mockingbird ' , ' author ' : ' Harper Lee ' ,
' isbn ' : 9780062420701 , ' price ' : 12.99} ,

{ ' title ' : ' Pride and Prejudice ' , ' author ' : ' Jane Austen ' ,
' isbn ' : 9781909621657 , ' price ' : 7.19},

{ ' title ' : ' 1984 ' , ' author ' : ' George Orwell ' ,
' isbn ' : 9781328869333 , ' price ' : 10}]

2. Length function. Python has a builtin2 function called len() through which the (2 P)
length of an instance of a data type can be computed, e.g. len(['this list has

one element']) returns 1. Which of the data types that you learned in the lecture
are valid input of the function?

1white spaces () are only visualized for your convenience
2“builtin” means that this function is provided per se

https://realpython.com/python-formatted-output/
https://realpython.com/python-formatted-output/

3. In the lecture, you got a very brief introduction into Python’s slice notation for (2 P)
ordered collections and strings. For example, my_list[:3] will return the first three
elements of the list my_list. Inform yourself about the capabilities of the slice
notation to answer the following questions:

(a) How to extract the last three elements of a list?

(b) How to extract all elements of odd positions of a list?

4. Set. Which data types can be stored in a set? (1 P)

5. Implicit Boolean conversion. In Python, the conversion of non-Boolean data (3 P)
types in Boolean expressions is implicit, as illustrated in the following:

• False or 'This is a text' evaluates to 'This is a text',
• 12 and 13 evaluates to 13,

• 0 or (None and 'This is a text' and False) evaluates to None

To understand this behavior of Python, remember that Python evaluates statements
from left to right. Also, Python makes use of lazy-evaluation, i.e., it stops the
evaluation of the expression as early as its result becomes obvious. For instance,
in the third example, the expression 'This is a text' and False is not evaluated,
because None already falsified the and conjunctions.

Evaluate the following Boolean expression and explain your result. Specify the po-
sition at which Python stops the evaluation:

(a) 0 and 'This is a text' or ' '

(b) age = 15.5

age > 16 and ' You can buy beer ' or ' No alcoholic ' + \

' beverages for minors , sorry '

(c) ('a' and 0) or (False or (-1 and 4 > 10))

6. Elif clauses. Next to if and if-else clauses, Python also allows if-{elif}∗ and (1 P)
if-{elif }∗-else clauses, where the expression {elif}∗ means that the “elif” statement
can be repeated an arbitrary number of times. The elif clause allows to make case
distinctions such as the one shown in the following example:

a = ' Jane '
if a == ' Mary ' :

print(' Gotcha! I knew it was you , Mary ')
elif a == ' John ' :

print(' John! What a surprise! ')
elif a == ' Jane ' :

print(' Of all people , I expected you the least , Jane! ')
else:

print(' Sorry , but I \ ' m lost. Who are you? ')

Use the if-{elif }∗-else clause to check the type a given variable a. Similar to the
example above, do four case distinctions to check three types of your choice. Use
the print function to reveal the variable’s type in a full sentence.

Important:
Please submit your solution as (adequately commented) Python file. Use the
cell separator comment “#%%” to partition your Python file analog to the six
exercises. Make sure your Python file contains only valid Python code.

