
Mining Data Streams III /
Frequent Itemsets II

Alexander Schönhuth

Bielefeld University
July 16, 2020

TODAY

Overview
I Mining Data Streams III

I Estimating Moments: Alon-Matias-Szegedy algorithm
I Decaying Windows

I Mining Frequent Itemsets II
I The Multihash and Multistage Algorithms
I Randomized Algorithms: Toivonen’s Algorithm

Learning Goals: Understand these topics and get familiarized

Estimating Moments

The Alon-Matias-Szegedy Algorithm

MOMENTS: DEFINITION AND PROBLEM

Assume that the set of universal elements is ordered, and

I indexed by 1 ≤ i ≤ I, where

I I is the cardinality of the universal set.

K-TH MOMENT
Consider a stream.

I Let mi be the number of occurrences of the i-th universal element
in the stream

I The k-th order moment of the stream is defined to be

I∑
i=1

(mi)
k (1)

MOMENTS: EXAMPLES

k-th order moment:
I∑

i=1

(mi)
k

Examples

I The 0-th moment of a stream is the number of distinct stream elements
I The 1-st moment of a stream is the overall number of stream elements

I The 2-nd moment of a stream is sometimes called the surprise number
I Consider a stream of length 100, on 11 different elements
I The most even distribution, 10 appearances for one particular element,

and 9 for all others, yields surprise number 102 + 10 · 92 = 910
I The most uneven (“surprising”) distribution, 90 appearances for one

particular element, and 1 for all others, yields surprise number
902 + 10 · 12 = 8110

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

I Keeping a count for each element in main memory is infeasible

I Therefore, we need to estimate the k-th order moments
+ The Alon-Matias-Szegedy algorithm does this

Notation:

I Let n be the length of the stream

I Let X be variables for which we store attributes
I X.element as an element of the universal set
I X.index is a position 1 ≤ i ≤ n where X.element appears
I X.value is defined as the number of times X.element appears in the

stream between (and including) positions X.index and n

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

Example
Let the stream be a, b, c, b, d, a, c, d, a, b, d, c, a, a, b.

I Stream length is n = 15

I The true second moment is 52 + 42 + 32 + 32 = 59

I Let us keep three variables, X1,X2 and X3, for which
X1.index = 3,X2.index = 8,X3.index = 13

I X1.element = c,X2.element = d,X3.element = a

I X1.value = 3,X2.value = 2,X3.value = 2

ALONG-MATIAS-SZEGEDY ALGORITHM: 2ND

MOMENT

ALON-MATIAS-SZEGEDY ALGORITHM

I As an estimate for 2nd-order moment, compute, for any X,

n(2X.value− 1) (2)

I For several X: 2nd-order moment = average of single estimates

Example (cont.): Stream = a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

I We had X1.value = 3,X2.value = 2,X3.value = 2

I n(2X1.value− 1) = 15(2 · 3− 1) = 75,n(2X2.value− 1) =
n(2X3.value− 1) = 45

I Yields average (75 + 45 + 45)/3 = 55, close to true value 59

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

I Let e(i) be the stream element appearing at position i
I Let c(i) be number of times e(i) appears between (and including)

positions i to n
I In example above, e.g. e(6) = a and c(6) = 4

The expected value of n(2X.value− 1) computes as the average of n(2c(i)− 1)
over i:

E(n(2X.value− 1)) =
1
n

n∑
i=1

n(2c(i)− 1) (3)

by canceling factors further simplifying to

n∑
i=1

(2c(i)− 1) (4)

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF II

E(n(2X.value− 1)) =
n∑

i=1

(2c(i)− 1) (5)

Regroup summands in (5) by their associated values e(i):

n∑
i=1

(2c(i)− 1) =
∑

a

∑
i: e(i)=a

(2c(i)− 1) (6)

Consider one particular a, let ma be the number of times a appears in stream:
I Last i where a appears: 2c(i)− 1 = 2× 1− 1 = 1
I Second last i where a appears: 2c(i)− 1 = 2× 2− 1 = 3

I
...

I First i where a appears: 2×ma − 1

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF III

Consider one particular a, let ma be the number of times a appears in stream:
I Last i where a appears: 2c(i)− 1 = 2× 1− 1 = 1
I Second last i where a appears: 2c(i)− 1 = 2× 2− 1 = 3

I
...

I First i where a appears: 2×ma − 1

This yields ∑
i:e(i)=a

(2c(i)− 1) = 1 + 3 + 5 + ...+ (2ma − 1) = (ma)
2 (7)

where the last equation follows from an easy induction.

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF IV

This yields ∑
i:e(i)=a

(2c(i)− 1) = 1 + 3 + 5 + ...+ (2ma − 1) = (ma)
2

where the last equation follows from an easy induction.

Overall,

E(n(2X.value− 1))
(5)
=

n∑
i=1

(2c(i)− 1)
(6)
=

∑
a

∑
i: e(i)=a

(2c(i)− 1)
(7)
=

∑
a

(ma)
2 (8)

which concludes the proof.

ESTIMATING HIGHER-ORDER MOMENTS

I Observe that 2v− 1 for v = 1, ...,ma sum to (ma)
2

I The inductive proof makes use of the “telescope property”:
2v− 1 = v2 − (v− 1)2

I Analogously, by v3 − (v− 1)3 = 3v2 − 3v + 1:

ma∑
v=1

3v2 − 3v + 1 = (ma)
3 (9)

I So, for a variable X, we can use

n(3((X.value)2 − 3X.value + 1)) (10)

as an estimate for the third order moment
I For arbitrary k, take

n((X.value)k − (X.value− 1)k) (11)

as estimate for variable X

MOMENTS FOR INFINITE STREAMS

I Situation: Stream length n grows with time
I Problem: For selected variables X, we need X.index to be uniformly

distributed
I So, selecting variables X a priori tends to be biased, + non-uniform

I Solution: Maintain as many variables as possible. As stream grows:
I Discard existing variables
I Replace by new ones
I such that at all times, variables are uniformly distributed

I Remark: This establishes a generally applicable strategy for sampling
elements from a stream:

I Recall the problem of selecting representative samples
I Recall the general sampling problem

MOMENTS FOR INFINITE STREAMS: SOLUTION

I Suppose we can store/maintain s variables
I Suppose we have seen n stream elements
I Suppose the s different X.index are uniformly distributed
I That is, the probability to see position 1 ≤ i ≤ n among the selected

X.index is s/n

I Upon arrival of (n + 1)-st element, do
I Pick position n + 1 with probability s/(n + 1)
I If picked, create variable X with X.index = n + 1, and throw out any

earlier X with equal probability 1/s
I If not picked, keep existing variables

I Claim: Afterwards, each position has been selected with probability
s/(n + 1)

MOMENTS FOR INFINITE STREAMS: SOLUTION

I Upon arrival of (n + 1)-st element, do
I Pick position n + 1 with probability s/(n + 1)
I If picked, create variable X with X.index = n + 1, and throw out any

earlier X with equal probability 1/s
I If not picked, keep existing variables

I Claim: Afterwards, each position has been selected with probability
s/(n + 1)

Proof:

I (n + 1)-st position is picked with probability s/(n + 1)
I Let 1 ≤ i ≤ n any other position: proof by induction
I Induction hypothesis: before (n + 1)-st element arrived, i had been

picked with probability s/n
I With probability 1− s/(n + 1), probability for having i stays s/n
I With probability s/(n + 1), probability for having i is (s− 1)/s

MOMENTS FOR INFINITE STREAMS: SOLUTION

Proof:

I (n + 1)-st position is picked with probability s/(n + 1)
I With probability 1− s/(n + 1), probability for having i stays s/n
I With probability s/(n + 1), probability for having i is (s− 1)/s

Overall
(1− s

n + 1
)(

s
n
) + (

s
n + 1

)(
s− 1

s
)(

s
n
) (12)

simplifying to

(1− s
n + 1

)(
s
n
) + (

s− 1
n + 1

)(
s
n
) = ((1− s

n + 1
) + (

s− 1
n + 1

))(
s
n
) (13)

yielding
(

n
n + 1

)(
s
n
) =

s
n + 1

(14)

Most Common Elements

Decaying Windows

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world
I Goal: Summarize stream by listing currently most “popular” movies

I Currently popular:
I Movie that sold plenty of tickets years ago not to be listed
I Movie that sold 2n tickets last week, for large n, currently popular
I Movie that sold n tickets in last 10 weeks is even more popular
I How to grasp that idea?

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world
I Goal: Summarize stream by listing currently most “popular” movies

I Possible solution:
I Bit stream for each movie
I The i-th bit in a movie stream is 1 if the i-th ticket was for that movie
I Pick window of size N, where N reasonably chosen to reflect tickets to be

recent
I Use method for estimating number of ones to estimate number of tickets

for each movie
I Rank movies by the estimated counts
I Works for movies, because there only thousands of movies
I Drawback: Does not work for items at Amazon or tweets per Twitter-user

+ too many items or users

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world
I Goal: Summarize stream by listing currently most “popular” movies

I Alternative approach:
I Do not ask for count of ones in a window
I Rather, compute “smooth aggregation” of all ones in stream
I Smooth: use weights to rate stream elements in terms of recentness
I The further back in the stream, the less weight given

EXPONENTIALLY DECAYING WINDOW: DEFINITION
DEFINITION [EXPONENTIALLY DECAYING WINDOW]:
Let a stream

I consist of elements a1, a2, ..., at (where at is the most recent one)
I Let c be small constant, e.g. c ∈ [10−9, 10−6]

The exponentially decaying window for the stream is defined to be the sum

t−1∑
i=0

at−i(1− c)i (15)

Decaying window and fixed-length window of equal weight
From mmds.org

mmds.org

EXPONENTIALLY DECAYING WINDOW: DEFINITION

Decaying window and fixed-length window of equal weight
From mmds.org

I Decaying window puts weight (1− c)i on (t− i)-th element
I A window of length 1/c puts equal weight 1 on the first 1/c elements
I Both principles distribute the same weight to stream elements overall

mmds.org

UPDATING EXPONENTIALLY DECAYING WINDOWS

Upon arrival of a new element at+1, one updates the exponentially
decaying window

∑t−1
i=0 at−i(1− c)i by

1. multiplying the current window by (1− c), yielding

t−1∑
i=0

at−i(1− c)i+1

2. adding at+1, yielding

t−1∑
i=0

at−i(1− c)i+1 + at+1 =

(t+1)−1∑
i=0

a(t+1)−i(1− c)i

EXPONENTIALLY DECAYING WINDOWS: FINDING

THE MOST POPULAR MOVIES

I Most Popular Movies: Idea
I Have a bit stream for each movie, as before
I Use e.g. c = 10−9 (≈ sliding window of size 1/c = 109)
I On incoming movie ticket sale, update all decaying windows, as described

above
I First, multiply all decaying windows by 1− c
I Add 1 for stream of the movie of the ticket; if there is no stream for

that movie, create one
I Do nothing (add 0) for all other streams

I If any decaying window drops below threshold of 1/2, drop window
I Because the sum of all scores is 1/c, there cannot be more than 2/c movies

with score of 1/2 or more
I So, 2/c is limit on number of movies being tracked at any time
I In practice, there should be much less movies counted

I Therefore, one can apply the technique also for Amazon items and
Twitter-users

A-Priori Algorithm Extensions
The Multistage Algorithm

THE MULTISTAGE ALGORITHM: MOTIVATION

I The predominant bottleneck in most applications of A-Priori is
the size of C2, the candidate pairs

I Several algorithms address to trim down that size

I Exemplary algorithms:
I The algorithm of Park, Chen and Yu (PCY algorithm)
I The Multistage algorithm
I The Multihash algorithm

I Treated PCY before; will do Multistage and Multihash in the
following

MULTISTAGE ALGORITHM: MAIN MEMORY USAGE

Use of main memory during PCY passes
Adopted from mmds.org

mmds.org

THE MULTISTAGE ALGORITHM

I Particular Motivation: Selecting {i, j} to be in C2

I In PCY: even when reducing to frequent i and j, and {i, j}
hashing to frequent buckets, still too many pairs to be counted

I So, need to decrease size of C2 further

I Do this by introducing extra pass:
I The first pass is as before in PCY
I In the second pass, have another hash table that raises a third

condition
I In the third pass, count only pairs that fulfill all three conditions

THE MULTISTAGE ALGORITHM: SECOND PASS

I Maintain,
I tables A on item names to integers and
I C on frequent items: C[i] = k if item i is k-th frequent item, and

C[i] = 0 if i-th item is not frequent
I bitmap H′, where entries refer to buckets from hash map, with 1

indicating frequent bucket

I In addition, raise another hash table H2 that
I hashes pairs of items {i, j}
I if both i and j are frequent (*), and {i, j} hashes to bucket b such

that H′[b] = 1 (**), to
I buckets holding integers

H2[{i, j}] ∈ N

reflecting number of times pairs hashed to that bucket

THE MULTISTAGE ALGORITHM: SECOND PASS

I To construct H2, use double loop through baskets:
I hash each pair that meets (*) and (**) to bucket, and
I increase the integer in that bucket by one

I Again, a frequent bucket b in H2 exceeds the support threshold s

I Relative to number of frequent buckets using first H, the number
of frequent buckets in H2 should be much reduced, because
much less pairs are hashed

THE MULTISTAGE ALGORITHM

I Definition of Multistage C2: For {i, j} ∈ C2, both
I (*) i and j must be frequent
I (**) {i, j}must hash to a frequent bucket according to H
I (***) {i, j}must hash to a frequent bucket according to H2

I Use of C2 in third pass:
I Keep A (items to integers), C (frequent items), H′ (bitmap for H)
I Transform H2 into bitmap H′′ where

H′′[b] =

{
1 if H2[{i, j}] ≥ s
0 if H2[{i, j}] < s

(16)

where b is the bucket {i, j} hashes to by H2

THE MULTISTAGE ALGORITHM

I (Tricky?) Question: Why does (***) not imply (**) and (*)? Weren’t
all {i, j} hashed with H2 selected to hash to frequent bucket with
H and consist of frequent i and j?

I Answer:
I Yes: for the second part.
I But: Any {i, j} that does not consist of frequent i, j, or hash to

frequent bucket with H could hash to frequent bucket with H2

nevertheless, although not having contributed to count in the
bucket it hashes to

MULTISTAGE ALGORITHM: MAIN MEMORY USAGE

Use of main memory during Multistage passes
Adopted from mmds.org

mmds.org

A-Priori Algorithm Extensions
The Multihash Algorithm

THE MULTIHASH ALGORITHM

I Particular Motivation: Try to profit from virtues of Multistage
algorithm in one, and not two passes

I So, in first pass, use two hash tables H1 and H2,

I Both H1 and H2 have only half as many buckets

I Applicability: When average bucket size in PCY is much lower
than threshold s
+ So, still number of frequent buckets will be limited when
using half as many buckets

I For proceeding with second pass, turn H1 and H2 into bitmaps
H′,H′′ as in Multistage

I Apply exact same conditions as in Multistage for pair {i, j} to be
counted

THE MULTIHASH ALGORITHM: EXAMPLE

I Imagine average bucket count in PCY is s/10

I Number of pairs of items randomly hashing to frequent bucket
is 1/10

I So, with half as many buckets, average count in Multihash is s/5

I Number of pairs of items randomly hashing to frequent buckets
with both H1 and H2 is 1/25

I So, we deal with (approximately!) 2.5 times less frequent pairs
in Multihash

MULTIHASH ALGORITHM: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Adopted from mmds.org

mmds.org

Limited-Pass Algorithms
The Toivonen Algorithm

LIMITED-PASS ALGORITHMS

Strategy

I To save on main memory, consider only a subsample of baskets

I Take into account that one may have
I False negatives: itemsets not identified as frequent although they are
I False positives: itemsets identified as frequent although they are not

I In many applications, a certain amount of false negatives and/or
positives is acceptable

Algorithms

I Simple Randomized Algorithm: basic strategy is briefly discussed
I Savasere, Omiecinski, Navate (SON): not considered in the following
I Toivonen: explained here

SIMPLE RANDOMIZED ALGORITHM: STRATEGY

I Let m be the overall number of baskets

I Consider a situation where main memory can deal with only k
baskets

I Select probability p such that pm = k

I Run through basket file, and select each basket to be part of
sample with probability p

I If s is original support threshold, set s′ := sp for sample

I Run any A-Priori type algorithm on resulting subset of baskets
using s′ as support threshold

I Declare itemsets frequent in subsample as frequent overall

SIMPLE RANDOMIZED ALGORITHM: ERRORS

I False positive: Itemset that is frequent in sample, but not in the
whole

I False negative: Itemset that is frequent in the whole, but not in
sample

I Eliminating false positives: Running through whole dataset and
counting each itemset found to be frequent in the sample
eliminates false positives entirely

I Eliminating false negatives: Cannot eliminate false negatives
entirely, but reduce them by choosing s′ < sp, e.g. s′ = 0.9sp

TOIVONEN’S ALGORITHM I

Algorithm

I Run simple sample strategy at s′ = 0.9ps or s′ = 0.8ps

I Constructs all itemsets that are frequent in the sample (at
support threshold s′)

I Subsequently, construct negative border, which contains
I itemsets that are not frequent in the sample
I while all of their immediate subsets are frequent in the sample

NEGATIVE BORDER: EXAMPLE

I Consider items {A,B,C,D,E}
I Itemsets found to be frequent: {A}, {B}, {C}, {D}, {B,C}, {C,D},

formally also the empty set ∅
I Negative border:

I {E} not frequent, but ∅ is frequent
I {A,B}, {A,C}, {A,D}, {B,D}: not frequent, but singletons contained are
I No triples in negative border ({B,C,D} is not, because {B,D} is not

frequent)

TOIVONEN’S ALGORITHM II

I Pass through full dataset: Count all itemsets found to be frequent
or in the negative border in the sample

I Two possible outcomes:

1. No member of negative border is frequent in whole dataset:
correct set of itemsets frequent in the whole are the ones frequent
in the sample found to be frequent in the whole

2. Some member of negative border is frequent in whole dataset:
there could be even larger sets frequent in the whole
+ no guarantees, repeat the algorithm

TOIVONEN’S ALGORITHM: PROOF

I No false positives: all frequent itemsets were determined as
frequent in the whole dataset 3

I No false negatives: If no member of the negative border is
frequent in the whole dataset, we need to show that there is no
itemset that

I is frequent in the whole
I while, in the sample not among the frequent itemsets
I while, in the sample, not in the negative border

TOIVONEN’S ALGORITHM: PROOF

I Proof of no false negatives: Suppose the contrary, that is, there is S
found to be frequent in the whole, but is neither frequent in the
sample nor part of the negative border of the sample

I By monotonicity, all subsets of S are frequent in the whole

I Choose T ⊆ S of the smallest possible size such that still T is not
frequent in the sample

I Claim: T is in the negative border of the sample

I Proof of Claim:
I All proper subsets of T are frequent in the sample, because T was

chosen of the smallest possible size
I T itself is not frequent in the sample

I We obtain that T was in the negative border of the sample, but
frequent in the whole, which is a contradiction!

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 4.5, 4.7; 6.3.2, 6.3.3, 6.4.1,
6.4.2, 6.4.5, 6.4.6

I As usual, see http://www.mmds.org/ in general for further
resources

http://www.mmds.org/

