
Recommendation Systems

Alexander Schönhuth

Bielefeld University
July 9, 2020

LEARNING GOALS TODAY

I Intro: Model for Recommendation Systems
I Collaborative Filtering
I Dimensionality Reduction: The UV Decomposition

Recommendation Systems
Introduction

RECOMMENDATION SYSTEMS

I Recommendation systems are
I web applications that
I predict user responses to options

I Examples:
I Offering articles to online newspaper readers based on predicting

reader interests
I Offering online retailer suggestions to customers based on prior

purchases / searches

I Classification:
I Content based systems: characterize properties of items examined

+ movie is “cowboy” movie if watched by many users liking
cowboy movies

I Collaborative filtering systems: recommend items based on
similarity measures between users and/or items

RECOMMENDATION SYSTEMS: MODEL

I The Utility Matrix: Putting users and items into context

I Long Tails: Contain items that serve only small amounts of users
I Long tail items not displayable in regular stores, while full range

of products available online

I Applications:
I Recommending products
I Recommending movies
I Recommending news articles

THE UTILITY MATRIX

DEFINITION [UTILITY MATRIX]:

I Let m be the number of users

I Let n be the number of items

I Let S be a set of ratings/values, including an element
representing “unknown”

I The utility matrix M ∈ Sm×n has m rows and n columns where

Mui ∈ S (1)

reflects the degree of preference of user u ∈ {1, ...,m} for item
i ∈ {1, ...,n}.

I If Mui = , the degree of preference of user u for item i is
unknown.

THE UTILITY MATRIX: EXAMPLE

I The utility matrix M ∈ Sm×n has m rows and n columns where

Mui ∈ S

reflects the degree of preference of user u for item i.
I If Mui = , the degree of preference of user u for item i is unknown.

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

mmds.org

THE UTILITY MATRIX: GOAL

Utility matrix reflecting users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Goal: Predict values from S other than for unknown entries Mui =

I Note that in applications, not every value needs to be predicted
I Sufficiently many predictions for a user suffice

mmds.org

THE UTILITY MATRIX: EXAMPLE

Utility matrix reflecting users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I HP = Harry Potter, TW = Twilight, SW = Star Wars
I E.g. user A likes Twilight, user B likes Harry Potter
I Possible question: Will user A like movie SW2?
I Note similarity between SW1 and SW2, note that A disliked SW1
I Answer: Possibly not!

mmds.org

POPULATING THE UTILITY MATRIX

I Acquiring data from which to build utility matrix can be difficult

I User Ratings: Ask users to provide estimates; however
I Users are unwilling to provide responses
I Ratings are biased towards those willing

I Infer from users’ behaviour
I Once bought item / watched movie, rate as liked by user
I Value system only has 0 and 1, where 0 reflects

THE LONG TAIL

I Physical stores
I suffer from limited resources for items
I e.g. can offer several thousands of books
I Recommendation: Pick most purchased items and recommend to

everyone

I Online stores
I do not suffer from lack of resources
I e.g. can offer several millions of books
I Recommendation: Substantially more involved

I The Long Tail Phenomenon explains why recommendations
systems are necessary

THE LONG TAIL: ILLUSTRATION

Items (x-axis) rated by popularity (y-axis); vertical bar: cutoff in physical stores
Adopted from mmds.org

mmds.org

RECOMMENDATION SYSTEMS: APPLICATIONS

I Product Recommendations
I Amazon offers products to returning users based on prior

purchases
I Extreme example: “Touching the Void” only increased in popularity

after “Into Thin Air” appeared on the market

I Movie Recommendations
I Netflix suggests movies to watch to users
I Netflix offered one million dollars for algorithm beating their own

recommendation system by 10%
I Price was won in 2009 by team of researchers called “Bellkor’s

Pragmatic Chaos”

I News Articles
I Identify articles of interest to readers
I Similarity based on similarity of important words and/or articles

read by people with similar interests
I YouTube is another example

CONTENT BASED RECOMMENDATIONS

I Content based systems focus on properties of items
I Determine features that describe the items
I Represent items as vector in feature space
I E.g. represent movies as bitvectors where entries relate to actors: 1

means actor plays in movie, 0 s/he doesn’t

I For recommending items to users:
I Develop user representations referring to the same feature space
I E.g. represent movie watchers as vector where entries represent

preferences for actors
I Recommendation: Item bitvectors that are similar to user vector

representations
I Jaccard distance, Cosine distance etc.

Collaborative Filtering

COLLABORATIVE FILTERING: INTRODUCTION

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Instead of item profiles, make direct use of utility matrix
I Items are represented by columns in utility matrix
I Users are represented by rows in utility matrix

I Recommendations:
I Identify users that are similar to the particular user
I Recommend items considered by the users identified as similar

How to compute user similarity?

mmds.org

COLLABORATIVE FILTERING: INTRODUCTION

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I A and B watched only one movie together, which they both liked
I A and C watched two movies together, but seem to have opposite

opinions in both cases

Good similarity measure supposed to reflect this

mmds.org

COLLABORATIVE FILTERING: JACCARD DISTANCE

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Users = sets of movies, containing all movies they watched
I

SIM(A,B) =
|A ∩ B|
|A ∪ B| =

1
5
<

1
2
=

2
4
=
|A ∩ C|
|A ∪ C| = SIM(A,C)

I Conclusion: Not a good idea when utility matrix contains ratings

mmds.org

COLLABORATIVE FILTERING: COSINE DISTANCE

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Users are vectors of integers
I Compute cosine of angle between user vectors
I Treat blanks as zeroes

+ Questionable idea: missing rating = bad rating

mmds.org

COLLABORATIVE FILTERING: COSINE DISTANCE

Rounded utility matrix users ×movies
Adopted from mmds.org

I Cosine(A,B):
4× 5√

42 + 52 + 12
√

52 + 52 + 42
= 0.380

I Cosine(A,C):
5× 2 + 1× 4√

42 + 52 + 12
√

22 + 42 + 52
= 0.322

I Conclusion: Points in the right direction

mmds.org

COLLABORATIVE FILTERING: ROUNDING DATA

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Round at cutoff: 0, 1, 2→ 0; 3, 4, 5→ 1
I

SIM(A,B) =
1
4
> 0 = SIM(A,C)

I Conclusion: Points in the right direction as well

mmds.org

COLLABORATIVE FILTERING: NORMALIZING DATA

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Subtract average rating of respective user from each rating
I Low ratings become negative numbers
I High ratings become positive numbers

I Cosine distance:
I Users with opposite views = vectors pointing in opposite directions
I Users with similar views = small angle between vectors

mmds.org

COLLABORATIVE FILTERING: NORMALIZING DATA

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I User D essentially disappeared (because of too indifferent ratings)
I Cosine(A,B):

(2/3)× (1/3)√
(2/3)2 + (5/3)2 + (−7/3)2

√
(1/3)2 + (1/3)2 + (−2/3)2

= 0.092

I Cosine(A,C):

(5/3)× (−5/3) + (−7/3)× (1/3)√
(2/3)2 + (5/3)2 + (−7/3)2

√
(−5/3)2 + (1/3)2 + (4/3)2

= −0.559

mmds.org

COLLABORATIVE FILTERING: NORMALIZING DATA

Utility matrix users ×movies, where S = {1, 2, 3, 4, 5, }
Adopted from mmds.org

I Cosine(A,B) = 0.092; Cosine(A,C) = −0.559

I Conclusion: Makes sense
I A,B slight similarity, just one movie rated in common
I A,C disagree to a stronger degree

mmds.org

DUALITY OF SIMILARITY

I Utility matrix tells about users, or items, or both

I While we focused on user similarity, techniques presented so far
can be applied to identify similar items, too

I However, difference is that items are classifiable, while users are
not

I Movies can be classified according to genres
I Users are rather heterogeneous in terms of genres

I Consequence: Similar items are easier to discover

DUALITY OF SIMILARITY: PREDICTIONS

Predicting entries in utility matrix M

I First, normalize utility matrix (as described above)

I Let sim denote similarity measure of choice

I Let u be user, i be item; we would like to predict Mui, where
I only predicting Mui is useless
I we need to predict Mui for many i, to put entries into mutual

context

DUALITY OF SIMILARITY

Predicting entries in utility matrix M

I First approach: Select top m users uj, j = 1, ...,m similar to u and
compute

Mui =
1
m

m∑
j=1

sim(uj,u)Muji (2)

I Advantage: One computation for several Mui for one u
I Disadvantage: Based on user similarity, which is less reliable

I Second approach: Select top m items ij, j = 1, ...,m similar to i and
compute

Mui =
1
m

m∑
j=1

sim(ij, i)Muij (3)

I Advantage: Based on item similarity, which is more reliable
I Disadvantage: Need to consider several items i for one u

CLUSTERING UTILITY MATRIX

I The utility matrix is sparse; many entries are missing
I Two items, even if classified identically, miss users with entries for

both of them
I Two users, even if having identical interests, miss items that they

both have entries for

I For increasing coherence, and decreasing sparsity: cluster items,
or users, or both

CLUSTERING UTILITY MATRIX

I For clustering, apply iterative procedure (hierarchical
clustering):

I Cluster items, e.g. decreasing number of columns by factor of two
I Entries for clustered columns are averages of single entries
I Cluster users, e.g. decreasing number of rows by factor of two
I Entries for clustered rows are averages of single entries

Utility matrix after one iteration of clustering items
Adopted from mmds.org

mmds.org

CLUSTERING UTILITY MATRIX: PREDICTIONS

Utility matrix after one iteration of clustering items
Adopted from mmds.org

I After clustering, predict items Mui as follows:
I Identify clusters of user u (cluster X) and item i (cluster Y)
I Predict Mui as MXY in the clustered utility matrix
I If MXY is empty, use distance based methods to predict MXY, and

predict Mui as MXY when done

mmds.org

Dimensionality Reduction

THE UV-DECOMPOSITION

I Let M be utility matrix, for m users and n items
Important: In https://mmds.org, m and n are reversed

I Assumption: There are d ≤ m,n hidden features such that
I Users u can be represented as d-dimensional vectors across these

features
I Items i can be represented as d-dimensional vectors across these

features
I For example, for movies and watchers, hidden features may refer

to genres

I How to reveal such hidden features?

I Solution: Apply UV-decomposition of M

I Note: Interpretation of meaning of hidden features may remain
unclear

https://mmds.org

THE UV-DECOMPOSITION

DEFINITION [UV-DECOMPOSITION]

I Let M ∈ Rm×n be a utility matrix; let d ≤ n,m

I Let U ∈ Rm×d,V ∈ Rd×n such that

UV ∈ Rm×n approximates M ∈ Rm×n closely

I Then U,V is called a UV-Decomposition (relative to d) of M

UV-decomposition of matrix M
Adopted from mmds.org

mmds.org

THE UV-DECOMPOSITION

UV-decomposition of matrix M
Adopted from mmds.org

I Prediction: Estimate missing entry Mui as (UV)ui =
∑d

k=1 uukvki

I Example: Predict missing M32 as u31v12 + u32v22

mmds.org

MEASURING CLOSENESS

DEFINITION [ROOT-MEAN-SQUARE ERROR]

I Let M ∈ Rm×n be decomposed into UV for U ∈ Rm×d,V ∈ Rd×n

I Let l be the number of non-blank entries in M

The root-mean-square error (RMSE) of M and UV is defined to be√√√√√1
l

∑
(u,i)

Mui 6=

(Mui − (UV)ui)2 (4)

that is the square root of the average over the squares of differences between
Mui and (UV)ui for all (u, i) where Mui is not missing.

Example

I In the example from above

RMSE(M,UV) =

√
1

23
(5− (u11v11 + u12v21))2 + ...+ (4− (u51v14 + u52v24)2

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Computing U,V: Idea

I Start with arbitrary (while still reasonably chosen) U,V
I Iterating through elements Uuk,Vki, decrease RMSE(M,UV) by

adjusting single entries Uuk or Vki in U or V
I Do this until convergence; eventually, U,V may reflect local minima
I Repeat this by varying inital choices for U,V to get global minimum or

suitable local minimum

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Matrix M to be decomposed into UV
Adopted from mmds.org

Initial choice for U,V
Adopted from mmds.org

Initial RMSE:
√

75
23 = 1.806

mmds.org
mmds.org

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Matrix M to be decomposed into UV
Adopted from mmds.org

Varying x = U11

Adopted from mmds.org

Minimize contribution from x = U11 to sum of squares:

(5− (x + 1))2 + (2− (x + 1))2 + (4− (x + 1))2 + (4− (x + 1))2 + (3− (x + 1))2

mmds.org
mmds.org

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Minimize contribution from x = U11 to sum of squares:

(5− (x + 1))2 + (2− (x + 1))2 + (4− (x + 1))2 + (4− (x + 1))2 + (3− (x + 1))2

which simplifies to

(4− x)2 + (1− x)2 + (3− x)2 + (3− x)2 + (2− x)2

Take derivative and set to zero:

−2×((4−x)+(1−x)+(3−x)+(3−x)+(2−x)) = 0 or −2×(13−5x) = 0

from which we obtain x = 2.6.

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Matrix M to be decomposed into UV
Adopted from mmds.org

Varying y = V11

Adopted from mmds.org

Minimize contribution from y = V11 to sum of squares:

(5− (2.6y+ 1))2 +(3− (y+ 1))2 +(2− (y+ 1))2 +(2− (y+ 1))2 +(4− (y+ 1))2

mmds.org
mmds.org

UV DECOMPOSITION: INCREMENTAL COMPUTATION

Minimize contribution from y = V11 to sum of squares:

(5− (2.6y+ 1))2 +(3− (y+ 1))2 +(2− (y+ 1))2 +(2− (y+ 1))2 +(4− (y+ 1))2

which simplifies to

(4− 2.6y)2 + (2− y)2 + (1− y)2 + (1− y)2 + (3− y)2

Take derivative and set to zero:

−2× (2.6(4− 2.6y) + (2− y) + (1− y) + (1− y) + (3− y)) = 0

from which we obtain y = 1.617.

UV DECOMPOSITION: INCREMENTAL COMPUTATION

I
∑

i be shorthand for sum over all i such that mui is not missing
I

∑
u be shorthand for sum over all u such that mui is not missing

I
∑

j 6=k shorthand for sum over all j = 1, ..., d except for j = k
I General formula for determining optimal x = Uuk:

x =

∑
i Vki(Mui −

∑
j 6=k UujVji)∑

i V2
ki

(5)

I General formula for determining optimal y = Vki:

y =

∑
u Uuk(Mui −

∑
j 6=k UujVji)∑

u U2
uk

(6)

COMPLETE UV-DECOMPOSITION ALGORITHM

There are four issues to deal with:

1. Preprocessing M
I Normalize M; undo normalization when making predictions

2. Initializing U and V
I Let a be average across non-blank elements of M
I Choose

√
a/d for each entry of U and V

I Perturb value
√

a/d randomly and independently for varying
initialization

3. Determine order in which to optimize elements of U,V
I Do row-by-row or column-by-column
I Choose entries randomly

4. Convergence? Stop the iteration.
I Stop when improvements in RMSE become negligible

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 9.1, 9.3, 9.4

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Various Topics”

http://www.mmds.org/

