
Mining Data Streams II / Link Analysis I

Alexander Schönhuth

Bielefeld University
June 18, 2020



TODAY

Overview
I Mining Data Streams II

I Estimating Moments: Alon-Matias-Szegedy algorithm
I Counting Ones in a Window: Datar-Gionis-Indyk-Motwani algorithm
I Decaying Windows

I Link Analysis I
I PageRank: Introduction, Definition
I PageRank: Dead Ends and Spider Traps

Learning Goals: Understand these topics and get familiarized

e



DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

e

mmds.org


DATA STREAM QUERIES

Issues
I Streams deliver elements rapidly: need to act quickly
I Thus, data to work on should fit in main memory
I New techniques required:
+ Compute approximate, not exact answers
+ Hashing is a useful technique

e



Counting Ones in a Window

The Datar-Gionis-Indyk-Motwani Algorithm

e



COUNTING ONES IN WINDOW: PROBLEM

I Situation:
I Suppose we have a window of length N on a binary stream
I Query: “how many ones are there in the last k ≤ N bits?”
I We cannot afford to store entire window
I Approximate algorithms required

I Present solution for binary streams first

I Discuss extension for summing numbers (from a stream of
numbers) thereafter

e



THE COST OF EXACT COUNTS

I One needs to store N bits to answer count-one-queries for
arbitrary k ≤ N:

I Assume one could use less than N bits
I We need 2N different representations to represent all possible 2N

bit strings of length N
I Since we use less than N bits, there are two different bit strings

w 6= x, for which we use the same representation
I Let k be the first bit from the right where w and x disagree
I Example:

I For w = 0101, x = 1010, we have k = 1
I For w = 1001, x = 0101, we have k = 3

I So the counts of ones in the window of length k for w and x differ
I But because we use identical representations for w and x, we will

output the same count
I This proves that one needs the full N bits to represent bit strings

for exact count-one-queries.

e



THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Situation:
I We consider a binary stream: elements are bits
I Let each element of the stream have a timestamp
I The first, leftmost element has timestamp 1, the second leftmost

has timestamp 2, and so on

I Goal: We like to count the ones among the N most recent
(leftmost) elements/bits

I Space requirements:
I Storing timestamps modulo N, and
I marking rightmost timestamp as most recent
I allows to store positions of individual bits using log2 N bits

e



THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Algorithm: Divide window into buckets, contiguous bit substrings

I Bucket Representation: For identifying buckets, we store
I The timestamp of its right end, and
I The size of the bucket, as the number of 1’s in the bucket
I The size is supposed to be a power of 2

I Bucket Space Requirements:
I Timestamp requires log2 N bits
I Size is 2j, hence requires log log2 N bits (by storing log2 j bits)
I Requires O(log N) bits overall

e



DATAR-GIONIS-INDYK-MOTWANI RULES

Bit stream divided into buckets following DGIM rules
From mmds.org

I Right end always is a 1
I Every 1 of the window is in some bucket
I Buckets do not overlap
I All sizes must be a power of 2
I For each possible size, there are either one or two buckets
I Size of buckets cannot decrease when moving

e

mmds.org


THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Key Ideas / Considerations

I The number of buckets representing a window must be small
I Estimate the number of 1’s in the last k bits (for any k) with an error of

no more than 50%
I How to maintain the DGIM Bucket Rules on new bits arriving?

e



THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Storage Requirements

I Each bucket can be represented using O(log N) bits
I Let 2j be size of largest bucket: 2j < N implies j ≤ log2 N
I So there are at most 2 buckets of sizes 2j, j = log2 N, ..., 1
I This means that there are O(log N) buckets
I Each bucket being represented by O(log N) bits requires O(log2 N)

space overall

e



THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Answering Queries

I Let 1 ≤ k ≤ N: how many 1’s are among the last k bits?

I Answer:
I Find leftmost (= with earliest timestamp) bucket b containing

some of last k bits
I Estimate: Sum of sizes of buckets right of b plus half the size of b

e

mmds.org


THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Example

I Let k = 10: how many 1’s are among 0110010110?
I Let t be timestamp of rightmost bit
I Two buckets with one 1 each, having timestamps t − 1, t − 2 are fully included in

k righmost bits
I Bucket of size 2 with timestamp t − 4 is also included
I Bucket of size 4 with timestamp t − 8 is only partially included
I Estimate: 1 + 1 + 2 + (1/2 × 4) = 6, one more than true count

e

mmds.org


DGIM: ERROR OF ESTIMATE

Bit stream divided into buckets following DGIM rules
From mmds.org

Case 1: estimate is less than c
I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: all 1’s in b are among k most recent bits
I So, estimate is lower by 1/2 × 2j = 2j−1 than c
I Because c ≥ 2j, error is at most half of c

e

mmds.org


DGIM: ERROR OF ESTIMATE

Bit stream divided into buckets following DGIM rules
From mmds.org

Case 2: estimate is larger than c

I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: only rightmost bit of b is among k most recent bits, and
I There is only one bucket for each of sizes 2j−1, ..., 1
I That yields c = 1 + 2j−1 + ...+ 1 = 1 + 2j − 1 = 2j

I Estimate is 2j−1 + 2j−1 + ...+ 1 = 2j−1 + 2j − 1, so

I Error 2j−1+2j−1
2j is no greater than 50% of true count

e

mmds.org


MAINTAINING DGIM RULES

Upon a new bit with timestamp t having arrived:

I Check timestamp s of leftmost bucket b:
I if s ≤ t − N, drop b from list of buckets

I If the new bit is 0, do nothing

I If the new bit is 1, do
I Create new bucket with timestamp t and size 1
I On increasing size, starting with size 1, while there are three buckets of the

same size, do
I keep the rightmost bucket of that size as is
I join the two left buckets into one of double the size
I where the timestamp is that of the rightmost bit

I For example: joining the two left of the three buckets of size 1 into a bucket
of size 2 may create a third bucket of size 2, and so on

I Runtime: Need to look at O(log N) buckets, joining is constant time, so
processing new bit requires O(log N) time overall

e



THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM
PART VI

Bit stream divided into buckets following DGIM rules (top), with new 1 arriving
(bottom)

From mmds.org

e

mmds.org


DGIM ALGORITHM: REDUCING THE ERROR

I For some r > 2, allow either r or r− 1 buckets of the same size
I Allow this for all but size 1 and largest size, whose numbers may be

any of 1, ..., r
I Compute estimate as before
I Extend maintaining the DGIM Bucket Rules in the obvious way

I Recall: largest error 2j−1+2j−1
2j was made when only one 1 from leftmost

bucket b was within window

I New error:
I True count is at most 1 + (r − 1)(2j−1 + ...+ 1) = 1 + (r − 1)(2j − 1)
I Estimate is 2j−1 − 1 + (r − 1)(2j − 1), so fractional error is

2j−1 − 1
1 + (r − 1)(2j − 1)

which is upper bounded by 1/2(r − 1)
I Picking large r can limit error to any ε > 0

e



DGIM ALGORITHM: EXTENSIONS

I DGIM can be extended to integers instead of bits
I Question is to estimate the sum of last k ≤ N integers from a window of

N integers overall
I However, DGIM cannot be extended to streams containing negative

integers
I Consider case of integers in range of 1 to 2m, so represented by m bits

I Solution:
I Treat each bit of integers as separate stream
I Apply DGIM algorithm to each of m streams, yielding estimate ci for i-th

stream
I Overall estimate:

m−1∑
i=0

ci2i

I If error is at most ε for all i, overall error is also at most ε

e



PageRank
Introduction

e



PAGERANK: OVERVIEW

I Motivation of PageRank definition: history of search engines

I Concept of random surfers foundation of PageRank’s
effectiveness

I Taxation (“recycling of random surfers”) allows to deal with
problematic web structures

e



HISTORY: EARLY SEARCH ENGINES

I Early search engines
I Crawl the (entire) web
I List all terms encountered in an inverted index
I An inverted index is a data structure that, given a term, provides

pointers to all places where term occurs

I On a search query (a list of terms)
I pages with those terms are extracted from the index
I ranked according to use of terms within pages
I E.g. the term appearing in the header renders page more

important
I or the term appearing very often

e



TERM SPAM

I Spammers exploited this to their advantage

I Simple strategy:
I Add terms thousands of times to own webpages
I Terms can be made hidden by using background color
I So pages are listed in searches that do not relate to page contents
I Example: add term “movie” 1000 times to page that advertizes

shirts

I Alternative strategy:
I Carry out web search on term
I Copy-paste highest ranked page into own page
I Upon new search on term, own page will be listed high up

I Corresponding techniques are referred to as term spam

e



PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

IDEA:
I Simulate random web surfers

I They start at random pages
I They randomly follow web links leaving the page
I Iterate this procedure sufficiently many times
I Eventually, they gather at “important” pages

I Judge page also by contents of surrounding pages
I Difficult to add terms to pages not owned by spammer

e



PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

JUSTIFICATION

I Ranking web pages by number of in-links does not work
I Spammers create “spam farms” of dummy pages all linking to one page

I But, spammers’ pages do not have in-links from elsewhere

+ Random surfers do not wind up at spammers’ pages
I (Non-spammer) page owners place links to pages they find helpful
I Random surfers indicate which pages are likely to visit

+ Users are more likely to visit useful pages

e



PAGERANK: DEFINITION

I PageRank is a function that assigns a real number to each
(accessible) web page

I Intuition: The higher the PageRank, the more important the page

I There is not one fixed algorithm for computing PageRank

I There are many variations, each of which caters to particular
issue

e



PAGERANK: DEFINITION

I Consider the web as a directed graph
I Nodes are web pages
I Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

e

mmds.org


PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I For example, a random surfer starts at node A

I Walks to B,C,D each with probability 1/3

I So has probability 0 to be at A after first step

e

mmds.org


PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I Random surfer at B, for example, in next step
I is at A,D each with probability 1/2
I is at B,C with probability 0

e

mmds.org


WEB TRANSITION MATRIX: DEFINITION

DEFINITION [WEB TRANSITION MATRIX]:

I Let n be the number of pages in the web

I The transition matrix M = (mij)1≤i,j≤n ∈ Rn×n has n rows and
columns

I For each (i, j) ∈ {1, ...,n} × {1, ...,n}
I mij = 1/k, if page j has k arcs out, of which one leads to page i
I mij = 0 otherwise

Transition matrix for web from slides before
Adopted from mmds.org

e

mmds.org


PAGERANK FUNCTION: DEFINITION

DEFINITION [PAGERANK FUNCTION]:

I Let n be the number of pages in the web

I Let pt
i , i = 1, ...,n be the probability that the random surfer is at

page i after t steps

I The PageRank function for t ≥ 0 is defined to be the vector

pt = (pt
1, pt

2, ..., pt
n) ∈ [0, 1]n

e



PAGERANK FUNCTION: INTERPRETATION

I Usually, p0 = (1/n, ...1/n) for each i = 1, ...,n

I So before the first iteration, the random surfer is at each page
with equal probability

I The probability to be at page i in step t + 1 is the sum of
probabilities to be at page j in step t times the probability to
move from page j to i

I That is, pt+1
i =

∑n
j=1 mijpt

j for all i, t, or, in other words

pt+1 = Mpt for all t ≥ 0 (1)

I So, applying the web transition matrix to a PageRank function
yields another one

e



PAGERANK FUNCTION: MARKOV PROCESSES

pt+1 = Mpt for all t ≥ 0

I This relates to the theory of Markov processes

I Given that the web graph is strongly connected
I That is: one can reach any node from any other node
I In particular, there are no dead ends, nodes with no arcs out

I it is known that the surfer reaches a limiting distribution p̄,
characterized by

Mp̄ = p̄ (2)

e



PAGERANK FUNCTION: MARKOV PROCESSES

Mp̄ = p̄

I Further, because M is stochastic (= columns each add up to one)
I p̄ is the principal eigenvector, which is
I the eigenvector associated with the largest eigenvalue, which is

one

I p̄i is the probability that the surfer is at page i after a long time

I Principal eigenvector of M expresses where the surfer will end
up

I Reasoning: The greater p̄i, the more important page i

e



PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I It holds that
Mtp0 −→

t→∞
p̄ (3)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence

I Example: Iterative application of transition matrix from above

Convergence to limiting distribution for four-node web graph
Adopted from mmds.org

e

mmds.org


PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I It holds that
Mtp0 −→

t→∞
p̄ (4)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence

I In practice, working real web graphs
I 50-75 iterations do just fine
I For efficient computation, recall MapReduce based matrix-vector

multiplication techniques

e



MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 4.6; 5.1

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Link Analysis II”

I See Mining of Massive Datasets 5.2–5.5

e

http://www.mmds.org/

