MapReduce III / Mining Data Streams I

Alexander Schönhuth

Bielefeld University June 4, 2020

TODAY

Overview

► MapReduce III

- Reducer Size
- Replication Rate
- Graph Model
- Mapping Schema
- Lower Bounds on Replication Rate
- Mining Data Streams I
 - Intro: A Data Stream Management Model
 - Sampling Data in a Stream
 - ► Filtering Streams: Bloom Filters
 - Counting Distinct Elements: Flajolet-Martin algorithm
 - Estimating Moments: Alon-Matias-Szegedy algorithm
 - Counting Ones in a Window: Datar-Gionis-Indyk-Motwani algorithm
 - Decaying Windows

Learning Goals: Understand these topics and get familiarized

Complexity Theory for MapReduce

MAPREDUCE: COMPLEXITY THEORY

Idea

- *Reminder:* A "reducer" is the execution of a Reduce task on a single key and the associated value list
- ► Important considerations:
 - Keep communication cost low
 - Keep wall-clock time low
 - Execute each reducer in main memory

► Intuition:

- The less communication, the less parallelism, so
- the more wall-clock time
- the more main memory needed
- ► *Goal:* Develop encompassing complexity theory

REDUCER SIZE: INFORMAL EXPLANATION

Reducer size: maximum length of list [v,w,...] after grouping keys

Adopted from mmds.org

REDUCER SIZE

DEFINITION [REDUCER SIZE]:

The *reducer size q* is the upper bound on the number of values to appear in the list of a single key.

Motivation

- Small reducer size forces to have many reducers
- Further creating many Reduce tasks implies high parallelism, hence small wall-clock time
- Sufficiently small reducer size allows to have all data in main memory

REPLICATION RATE

DEFINITION [REPLICATION RATE]:

The *replication rate r* is the number of all key-value pairs generated by Map tasks, divided by the number of inputs.

Motivating Example

One-pass matrix multiplication algorithm:

- ► Matrices involved are *n* × *n*
- ▶ *Reminder:* Key-value pairs for *MN* are ((*i*, *k*), (*M*, *j*, *m_{ij}*)), *j* = 1, ..., *n* and ((*i*, *k*), (*N*, *j*, *n_{jk}*)), *j* = 1, ..., *n*

▶ Replication rate *r* is equal to *n*:

- Inputs are all m_{ij} and n_{jk}
- For each m_{ij} , one generates key-value pairs for (i, k), k = 1, ..., n
- For each n_{jk} , one generates key-value pairs for (i, k), i = 1, ..., n
- Reducer size is 2n: for each key (i, k) there are n values from each m_{ij} and n values from each n_{jk}

UNIVERSIT

Situation

- ► Given large set *X* of elements
- Given similarity measure s(x, y) for measuring similarity between $x, y \in X$
- Measure is symmetric: s(x, y) = s(y, x)
- ► Output of the algorithm: all pairs x, y where s(x, y) ≥ t for threshold t
- *Exemplary input:* 1 million images (i, P_i) where
 - ▶ *i* is ID of image
 - P_i is picture itself
 - Each picture is 1MB

MapReduce: Bad Idea

- Use keys (i, j) for pair of pictures $(i, P_i), (j, P_j)$
- *Map*: generates $((i, j), [P_i, P_j])$ as input for
- *Reduce*: computes $s(P_i, P_j)$ and decides whether $s(P_i, P_j) \ge t$
- ▶ Reducer size *q* is small: 2 MB; expected to fit in main memory
- ▶ *However*, each picture makes part of 999 999 key-value pairs, so

 $r = 999\,999$

▶ Hence, number of bytes communicated from Map to Reduce is

$$10^6 \times 999\,999 \times 10^6 = 10^{18}$$

that is one exabyte

MapReduce: Better Idea

- ► Group images into *g* groups, each of 10⁶/*g* pictures
- *Map:* For each (i, P_i) generate g 1 key-value pairs
 - Let u be group of P_i
 - Let v be one of the other groups
 - Keys are sets $\{u, v\}$ (set, so no order!)
 - Value is (i, P_i)
 - Overall: $(\{u, v\}, (i, P_i))$ as key-value pair
- *Reduce:* Consider key $\{u, v\}$
 - Associated value list has $2 \times \frac{10^6}{g}$ values
 - Consider (i, P_i) and (j, P_j) when i, j are from different groups
 - Compute $s(P_i, P_j)$
 - Compute $s(P_i, P_j)$ for P_i, P_j from same group on processing keys $\{u, u + 1\}$

MapReduce: Better Idea

- *Replication rate* is g 1
 - Each input element (i, P_i) is turned into g 1 key-value pairs
- *Reducer size* is $2 \times \frac{10^6}{g}$
 - Number of values on list for reducer
 - Each value is about 1 MB yields $2 \times \frac{10^{12}}{g}$ stored at Reducer node
- *Example* g = 1000:
 - ► Input is 2 GB, fits into main memory
 - Total number of bytes communicated: $10^6 \times 999 \times 10^6 \approx 10^{15}$
 - ► 1000 times less than brute-force
 - ► Half a million reducers: maximum parallelism at Reduce nodes
- ► *Computation cost* is independent of *g*
 - Always all-vs-all comparison of pictures
 - Computing $s(P_i, P_j)$ for all i, j

MAPREDUCE: GRAPH MODEL

Goal: Proving lower bounds on replication rate as function of reducer size, for many problems. Therefore:

Graph Model:

- Graph describes how outputs depend on inputs
- Reducers operate independently: each output has one reducer that receives all input required to compute output

► Model foundation:

- There is a set of inputs
- There is a set of outputs
- Outputs depends on inputs: many-to-many relationship

MAPREDUCE: GRAPH MODEL EXAMPLE

Graph for similarity join with four pictures

Adopted from mmds.org

MAPREDUCE: GRAPH MODEL MATRIX MULTIPLICATION

Graph Model Matrix Multiplication

- Multiplying $n \times n$ matrices M and N makes
 - $2n^2$ inputs $m_{ij}, n_{jk}, 1 \le i, j, k \le n$
 - n^2 outputs $p_{ik} := (MN)_{ik}, 1 \le i, k \le n$
- Each output p_{ik} needs 2n inputs $m_{i1}, m_{i2}, ..., m_{in}$ and $n_{1k}, n_{2k}, ..., n_{nk}$
- Each input relates to *n* outputs: e.g. m_{ij} to $p_{i1}, p_{i2}, ..., p_{in}$

MAPREDUCE: GRAPH MODEL MATRIX MULTIPLICATION II

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}e&f\\g&h\end{array}\right]=\left[\begin{array}{cc}i&j\\k&l\end{array}\right]$$

Input-output relationship graph for multiplying 2x2 matrices

Adopted from mmds.org

MAPREDUCE: MAPPING SCHEMAS

A *mapping schema* with a given reducer size *q* is an assignment of inputs to reducers such that

- ► No reducer receives more than *q* inputs
- For every output, there is a reducer that receives all inputs required to generate the output

Consideration: The existence of a mapping schema for a given *q* distinguishes problems that can be solved in a *single* MapReduce job from those that cannot.

MAPPING SCHEMA: EXAMPLE

Consider computing similarity of *p* pictures, divided into *g* groups.

- Number of outputs: $\binom{p}{2} = \frac{p(p-1)}{2} \approx \frac{p^2}{2}$
- Reducer receives 2p/g inputs
 recessary reducer size is q = 2p/g
- Replication rate is $r = g 1 \approx g$:

$$r = 2p/q$$

r inversely proportional to *q* which is common

- ► In a mapping schema for reducer size *q*:
 - Each reducer is assigned exactly 2p/g inputs
 - In all cases, every output is covered by some reducer

MAPPING SCHEMAS: NOT ALL INPUTS PRESENT

Example: Natural Join $R(A, B) \bowtie S(B, C)$, where many possible tuples R(a, b), S(b, c) are missing.

- Theoretically $q = |A| \cdot |C|$ (keys were $b \in B$)
- ▶ But in practice many tuples (*a*, *b*), (*b*, *c*) are missing for each *b*, so *q* possibly much smaller than |*A*| · |*C*|

Main Consideration: One can increase *q* because of the missing inputs, without that inputs do no longer fit into main memory in practice

MAPPING SCHEMAS: LOWER BOUNDS ON REPLICATION RATE

Technique for proving lower bounds on replication rates

- Prove upper bound g(q) on how many outputs a reducer with q inputs can cover
 This may be difficult in some cases
- 2. Determine total number of outputs *O*
- 3. Let there be *k* reducers with $q_i < q, i = 1, ..., k$ inputs sobserve that $\sum_{i=1}^{k} g(q_i)$ needs to be no less than *O*
- 4. Manipulate the inequality $\sum_{i=1}^{k} g(q_i) \ge O$ to get a lower bound on $\sum_{i=1}^{k} q_i$
- 5. Dividing the lower bound on $\sum_{i=1}^{k} q_i$ by number of inputs is lower bound on replication rate

LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

- Recall that $r \le 2p/q$ was upper bound on replication rate for all-pairs problem
- ► *Here*: Lower bound on *r* that is half the upper bound

LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

- ► Steps from slide before:
 - Step 1: reducer with *q* inputs cannot cover more than $\binom{q}{2} \approx q^2/2$ outputs
 - Step 2: overall $\binom{p}{2} \approx p^2/2$ outputs must be covered
 - Step 3: So, the inequality approximately evaluates as

$$\sum_{i=1}^k q_i^2/2 \ge p^2/2 \qquad \Longleftrightarrow \qquad \sum_{i=1}^k q_i^2 \ge p^2$$

• Step 4: From $q \ge q_i$, we obtain

$$q\sum_{i=1}^{k}q_i \ge p^2 \qquad \Longleftrightarrow \qquad \sum_{i=1}^{k}q_i \ge \frac{p^2}{q}$$

• Step 5: Noting that $r = (\sum_{i=1}^{k} q_i)/p$, we obtain

$$r \ge \frac{p}{q}$$

UNIVERSITÄT BIELEFELD which is half the size of upper bound

Mining Data Streams: Introduction

MINING DATA STREAMS: INTRODUCTION I

- *Situation:* Data arrives in a stream (or several streams)
 - Too much to be put in active storage (main memory, disk, database)
 - If not processed immediately or stored (in inaccesible archives), lost forever
- ► *Algorithms* involve some summarization of stream(s); e.g.
 - create useful samples of stream(s)
 - ► filter the stream(s)
 - ▶ focus on windows of appropriate length (last *n* elements)

DATA STREAMS: EXAMPLES

Sensor data:

- Ocean data (temperature, height): terabytes per day
- Tracking cars (location, speed)
- Image data from satellites
- ► Internet/web traffic
 - Switches that route data also decide on denial of service
 - Tracking trends via analyzing clicks

DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

DATA STREAM QUERIES

► Standing queries

- need to be answered throughout time
- Answers need to be updated when they change
- Example: current or maximum ocean temperature

► Ad-hoc queries

- ask immediate questions
- *Example:* number of unique users of a web site in the last 4 weeks
- Not all data can be stored/processed
 Only certain questions feasible
- Need to prepare for queries
 For example, store data from sliding windows

DATA STREAM QUERIES

Issues

- Streams deliver elements rapidly: need to act quickly
- ▶ Thus, data to work on should fit in main memory
- New techniques required:
- Compute approximate, not exact answers
- 🖙 Hashing is a useful technique

Sampling Elements from a Stream

SAMPLING ELEMENTS

► Situation:

- Select subsample from stream to store
- Subsample should be representative of stream as a whole
- ► Running Example:
 - Search engine processes stream of search queries
 - Stream consists of tuples (user, query, time)
 - Can store only 1/10-th of data
 - Stream Query: Fraction of repeated search queries?

► Running Example:

Stream Query: Fraction of repeated search queries?

Naive and bad approach

- ► For each query, generate random integer from [0,9]
- ► Keep only queries if 0 was generated
- ► *Scenario:* Suppose a user has issued
 - ► *s* queries one time
 - *d* queries two times
 - no queries more than two times

• Correct answer is
$$\frac{d}{d+s}$$

- ► Running Example:
 - ► *Stream Query:* Fraction of repeated search queries?

Naive and bad approach

- Correct answer is $\frac{d}{d+s}$
- ► But on randomly selected queries, we see that
 - ▶ Of one-time queries, *s*/10 appear to show once
 - Of two-time queries, $d/10 \times d/10$ appear to show twice
 - Of two-time queries, $d(1/10 \times 9/10) \times 2$ appear to show once
 - Resulting in *estimate*

$$\frac{0.01d}{0.1s + 0.18d} = \frac{d}{10s + 19d}$$

for unique queries, which is wrong for positive s, d

- ► Running Example:
 - ► *Stream Query:* Fraction of repeated search queries?

Better approach

- ► For each user (not query!), generate random integer from [0,9]
- ► Keep 1/10th of users, e.g. if 0 was generated
- ► Implement randomness by hashing users to 10 buckets
 - avoids storing for each user whether he was in or out
- ► For maintaining sample for *a*/*b*-th of data, use *b* buckets, and keep users in buckets 0 to *a* − 1

Better approach

- ► *General Sampling Problem:* Generalize from one-valued key to arbitrary-valued keys, keep *a*/*b*-th of (multi-valued) keys by the same technique
- *Reducing sample size:* On increasing amounts of data, ratio of data used for sample to be lowered
 - ▶ When lowering is necessary, decrease *a* by 1, so 0 to *a* − 2 are still accepted
 - Remove all elements with keys hashing to a 1

Filtering Streams

FILTERING STREAMS: MOTIVATING EXAMPLE

- ▶ *Problem:* Filter for data for which certain conditions apply
- Can be easy: data are numbers, select numbers of at most 10
- ► Challenge:
 - ▶ There is a set *S* that is too large to fit in main memory
 - Condition is too check whether stream elements belong to S
- ► Motivating Example: Email Spam
 - Streamed data: pairs (email address, email text)
 - ▶ Set *S* is one billion (10⁹) *approved* (*no spam!*) *addresses*
 - Only process emails from these addresses
 reed to determine whether arbitrary address belongs to them
 - But, addresses cannot be stored in main memory
 - *Option 1:* make use of disk accesses
 - Option 2 (preferrable): Devise method without disk accesses, and determines set membership right in (vast) majority of cases
- ► *Solution:* "Bloom Filtering"

BLOOM FILTERING: RUNNING EXAMPLE

- ► Assume that main memory is 1GB
- Bloom filtering: use main memory as bit array (of eight billion bits)
- Devise hash function *h* that hashes email addresses to eight billion buckets
- ► Hash each member of *S* (allowed email addresses) to one of the buckets
- Set bits of hashed-to buckets to 1, leave other bits 0
- ► About 1/8-th of bits are 1

BLOOM FILTERING: RUNNING EXAMPLE

► Hash any new email address:

- ▶ If hashed-to bit is 1, classify address as no spam
- ▶ If hashed-to bit is 0, classify address as spam
- Each address hashed to 0 is indeed spam
- ▶ *But:* About 1/8-th of spam emails hash to 1
- So, not each address hashed to 1 is no spam
- ▶ 80% of emails are spam: filtering out 7/8-th is a big deal
- ► Filter cascade: filter out 7/8-th of (remaining) spam in each step

BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER] A *Bloom filter* consists of

- A bit array *B* of *n* bits, initially all zero
- ► A set *S* of *m* key values
- ▶ Hash functions *h*₁, ..., *h*_k hashing key values to bits of *B*

Solution Number of buckets is n

A Bloom filter for set $S = \{x, y, z\}$ using three hash functions

From Wikipedia, by David Eppstein

BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER] A *Bloom filter* consists of

- A bit array *B* of *n* bits, initially all zero
- ► A set *S* of *m* key values
- ► Hash functions *h*₁, ..., *h*_k hashing key values to bits of *B*
 - Solution Number of buckets is n

Bloom Filter Workflow

- ► Initialization
 - Take each key value $K \in S$
 - Set all bits $h_1(K), ..., h_k(K)$ to one

► Testing keys:

- ► Take key *K* to be tested
- Declare *K* to be a member of *S* if all $h_1(K), ..., h_k(K)$ are one

BLOOM FILTERING: ANALYSIS

- If $K \in S$, all $h_1(K), ..., h_k(K)$ are one, so K passes
- ▶ If $K \notin S$, all $h_1(K), ..., h_k(K)$ could be one, so K mistakenly passes False positive!
- *Goal:* Calculate probability of false positives
- ▶ For that, calculate probability that bit is zero after initialization
- Relates to throwing y darts at x targets, where
 - Targets are bits in array, so x = n
 - Darts are members in S (= m) times hash functions (= k), which makes y = km

IF What is the probability that target is not hit by any dart?

BLOOM FILTERING: ANALYSIS

Throwing *y* darts at *x* targets:

- Probability that a given dart will not hit a given target is (x 1)/x
- Probability that none of the y darts will hit a given target is

$$(\frac{x-1}{x})^y = (1-\frac{1}{x})^{x\frac{y}{x}}$$
(1)

• By $(1 - \epsilon)^{1/\epsilon} = 1/e$ for small ϵ , we obtain that (1) is $e^{-y/x}$

- x = n, y = km: probability that a bit remains 0 is $e^{-km/n}$
- ► Would like to have fraction of 0 bits fairly large
- If *k* is about n/m, then probability of a 0 is e^{-1} (about 37%)
- ▶ In general, probability of false positive is *k* 1 bits, which evaluates as

$$(1 - e^{-\frac{km}{n}})^k \tag{2}$$

Counting Distinct Elements The Flajolet-Martin Algorithm

COUNTING DISTINCT ELEMENTS: PROBLEM

- ► *Situation:* Stream elements chosen from universal set
- ► How many different elements have appeared in stream?
- Consider stream as a subset: determine cardinality (size) of subset
- ► Example: Unique users of website
 - Amazon: determine number of users from user logins
 - Google: determine number of users from search queries

COUNTING DISTINCT ELEMENTS: PROBLEM

- ► *Situation:* Stream elements chosen from universal set
- ► How many different elements have appeared in stream?
- ► Obvious, but expensive:
 - Keep stream elements in main memory
 - Store them in efficient search structure (hash table, search tree)
 - Works for sufficiently small amounts of distinct elements
- ► If too many distinct elements, or too many streams:
 - ► Use more machines 🖙 Ok if affordable
 - ► Use secondary memory (disk) 🖙 slow
 - Here: Estimate number of distinct elements using much less main memory than needed for storing all distinct elements
 - ► The *Flajolet-Martin algorithm* does this job

THE FLAJOLET-MARTIN ALGORITHM

• Central idea: Hash elements to bit strings of sufficient length

- ► For example, to hash URL's, 64-bit strings are sufficiently long
- ► Intuition:
 - ► The more different elements, the more different bit strings
 - ► The more different bit strings, the more "unusual" bit strings
 - Unusual here = bit string ends in many zeroes

DEFINITION [TAIL LENGTH]

- ► Let *h* be the hash function that hashes stream elements *a* to bit strings *h*(*a*)
- ► The *tail length* of *h*(*a*) is the number of zeroes in which it ends

THE FLAJOLET-MARTIN ALGORITHM

DEFINITION [TAIL LENGTH]

- ► Let *h* be the hash function that hashes stream elements *a* to bit strings *h*(*a*)
- The *tail length* of h(a) is the number of zeroes in which it ends

FLAJOLET ALGORITHM

- Let *A* be the set of stream elements
- ► Let

$$R := \max_{a \in A} h(a) \tag{3}$$

be the maximum tail length observed among stream elements

► *Estimate* 2^{*R*} for the number of distinct elements in the stream

FLAJOLET-MARTIN ALGORITHM: EXAMPLE

	User	Hashed Bitstring	
15 users	sean	01111101	→ Approximate Count = $2^4 = 16$
	todd	11010001	
	aaron	10000111	
	kat	01110001	
	don	01011010	
	sara	01000001	
	linda	01010011	
Because the longest leading sequence of zeros is 4 bits long, we can say that there may be approximately 16 users	eric	<u>0000</u> 1001 -	
	jack	01101001	
	steph	10001100	
	terry	00111110	
	tim	00010000	
	wanda	11110001	
	chris	01101110	
	jane	00010010	

Hashing user names to 8-bit strings

From towardsdatascience.com

FLAJOLET-MARTIN ALGORITHM: EXPLANATION

- Probability that bit string h(a) ends in r zeroes is 2^{-r}
- Probability that none of *m* distinct elements has tail length at least *r* is

$$(1-2^{-r})^m = ((1-2^{-r})^{2^r})^{m2^{-r}} \stackrel{(1-\epsilon)^{1/\epsilon} \approx 1/\epsilon}{=} e^{-m2^{-r}}$$
(4)

- ► Let $P_{m,r} := 1 (1 2^{-r})^m \approx 1 e^{-m2^{-r}}$ be the probability that for *m* stream elements, the maximum tail length *R* observed is at least *r*.
- ► Conclude:
 - For $m >> 2^r$, it holds that $P_{m,r}$ approaches 1
 - For $m \ll 2^r$, it holds that $P_{m,r}$ approaches 0
 - So, 2^R is unlikely to be much larger or much smaller than m

FLAJOLET-MARTIN ALGORITHM: COMBINING ESTIMATES

- *Idea*: Use several hash functions $h_k, k = 1, ..., K$
- Combine their estimates $X_k, k = 1, ..., K$
- ► Pitfall 1: Averaging
 - Let p_r be the probability that the maximum tail length of h_k is r
 - One can compute that

$$p_r \ge 2p_{r-1} \ge ... \ge 2^{-r+1}p_1 \ge 2^{-r}p_0$$

• So $E(X_k)$, the expected value of X_k computes as

$$E(X_k) = \sum_{r \ge 0} p_r 2^r \ge p_o \sum_{r \ge 0} 2^{-r} 2^r = p_0 \sum_{r \ge 0} 1 = \infty$$

- ► Therefore $\frac{1}{K} \sum_{k=1}^{K} E(X_k)$ the expected value of the average of the X_k turns out to be infinite as well
- Conclusion: Overestimates spoil averaging

FLAJOLET-MARTIN ALGORITHM: COMBINING ESTIMATES

- *Idea:* Use several hash functions $h_k, k = 1, ..., K$
- Combine their estimates $X_k, k = 1, ..., K$
- ► Pitfall 2: Computing Medians
 - The median is always a power of two
 makes only very limited sense
- ► Solution:
 - Group the hash functions into small groups and take averages within groups
 - Estimate *m* as median of group averages
 - Groups should be of size $C \log_2 m$ for some small C
- ► *Space Requirements:* Need to store only value of *X_k*, requiring little space as a maximum

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*: section 2.6; sections 4.1–4.4
- As usual, see http://www.mmds.org/ in general for further resources
- ► For deepening your understanding, consider voluntary *homework*: read 2.6.7 and try to make sense of this
- ► Next lecture: "Mining Data Streams II / PageRank I"

