
MapReduce III / Mining Data Streams I

Alexander Schönhuth

Bielefeld University
June 4, 2020

TODAY

Overview
I MapReduce III

I Reducer Size
I Replication Rate
I Graph Model
I Mapping Schema
I Lower Bounds on Replication Rate

I Mining Data Streams I
I Intro: A Data Stream Management Model
I Sampling Data in a Stream
I Filtering Streams: Bloom Filters
I Counting Distinct Elements: Flajolet-Martin algorithm
I Estimating Moments: Alon-Matias-Szegedy algorithm
I Counting Ones in a Window: Datar-Gionis-Indyk-Motwani algorithm
I Decaying Windows

Learning Goals: Understand these topics and get familiarized

e

Complexity Theory for MapReduce

e

MAPREDUCE: COMPLEXITY THEORY

Idea

I Reminder: A “reducer” is the execution of a Reduce task on a
single key and the associated value list

I Important considerations:
I Keep communication cost low
I Keep wall-clock time low
I Execute each reducer in main memory

I Intuition:
I The less communication, the less parallelism, so
I the more wall-clock time
I the more main memory needed

I Goal: Develop encompassing complexity theory

e

REDUCER SIZE: INFORMAL EXPLANATION

Reducer size: maximum length of list [v,w,...] after grouping keys
Adopted from mmds.org

e

mmds.org

REDUCER SIZE

DEFINITION [REDUCER SIZE]:
The reducer size q is the upper bound on the number of values to
appear in the list of a single key.

Motivation

I Small reducer size forces to have many reducers

I Further creating many Reduce tasks implies high parallelism,
hence small wall-clock time

I Sufficiently small reducer size allows to have all data in main
memory

e

REPLICATION RATE

DEFINITION [REPLICATION RATE]:
The replication rate r is the number of all key-value pairs generated by
Map tasks, divided by the number of inputs.

Motivating Example

I One-pass matrix multiplication algorithm:
I Matrices involved are n× n
I Reminder: Key-value pairs for MN are ((i, k), (M, j,mij)), j = 1, ..., n

and ((i, k), (N, j, njk)), j = 1, ..., n

I Replication rate r is equal to n:
I Inputs are all mij and njk
I For each mij, one generates key-value pairs for (i, k), k = 1, ..., n
I For each njk, one generates key-value pairs for (i, k), i = 1, ..., n

I Reducer size is 2n: for each key (i, k) there are n values from
each mij and n values from each njk

e

EXAMPLE: SIMILARITY JOIN

Situation

I Given large set X of elements

I Given similarity measure s(x, y) for measuring similarity
between x, y ∈ X

I Measure is symmetric: s(x, y) = s(y, x)

I Output of the algorithm: all pairs x, y where s(x, y) ≥ t for
threshold t

I Exemplary input: 1 million images (i,Pi) where
I i is ID of image
I Pi is picture itself
I Each picture is 1MB

e

EXAMPLE: SIMILARITY JOIN

MapReduce: Bad Idea

I Use keys (i, j) for pair of pictures (i,Pi), (j,Pj)

I Map: generates ((i, j), [Pi,Pj]) as input for
I Reduce: computes s(Pi,Pj) and decides whether s(Pi,Pj) ≥ t
I Reducer size q is small: 2 MB; expected to fit in main memory
I However, each picture makes part of 999 999 key-value pairs, so

r = 999 999

I Hence, number of bytes communicated from Map to Reduce is

106 × 999 999× 106 = 1018

that is one exabyte

,

e

EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Group images into g groups, each of 106/g pictures

I Map: For each (i,Pi) generate g− 1 key-value pairs
I Let u be group of Pi
I Let v be one of the other groups
I Keys are sets {u, v} (set, so no order!)
I Value is (i,Pi)
I Overall: ({u, v}, (i,Pi)) as key-value pair

I Reduce: Consider key {u, v}
I Associated value list has 2× 106

g values
I Consider (i,Pi) and (j,Pj) when i, j are from different groups
I Compute s(Pi,Pj)
I Compute s(Pi,Pj) for Pi,Pj from same group on processing keys
{u, u + 1}

e

EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Replication rate is g− 1
I Each input element (i,Pi) is turned into g− 1 key-value pairs

I Reducer size is 2× 106

g

I Number of values on list for reducer
I Each value is about 1 MB yields 2× 1012

g stored at Reducer node

I Example g = 1000:
I Input is 2 GB, fits into main memory
I Total number of bytes communicated: 106 × 999× 106 ≈ 1015

I 1000 times less than brute-force
I Half a million reducers: maximum parallelism at Reduce nodes

I Computation cost is independent of g
I Always all-vs-all comparison of pictures
I Computing s(Pi,Pj) for all i, j

e

MAPREDUCE: GRAPH MODEL

Goal: Proving lower bounds on replication rate as function of
reducer size, for many problems. Therefore:

Graph Model:

I Graph describes how outputs depend on inputs

I Reducers operate independently: each output has one reducer
that receives all input required to compute output

I Model foundation:
I There is a set of inputs
I There is a set of outputs
I Outputs depends on inputs: many-to-many relationship

e

MAPREDUCE: GRAPH MODEL EXAMPLE

Graph for similarity join with four pictures
Adopted from mmds.org

e

mmds.org

MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION

Graph Model Matrix Multiplication

I Multiplying n× n matrices M and N makes
I 2n2 inputs mij, njk, 1 ≤ i, j, k ≤ n
I n2 outputs pik := (MN)ik, 1 ≤ i, k ≤ n

I Each output pik needs 2n inputs mi1,mi2, ...,min and n1k,n2k, ...,nnk

I Each input relates to n outputs: e.g. mij to pi1, pi2, ..., pin

e

MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION II

Input-output relationship graph for multiplying 2x2 matrices

Adopted from mmds.org

e

mmds.org

MAPREDUCE: MAPPING SCHEMAS

A mapping schema with a given reducer size q is an assignment of
inputs to reducers such that

I No reducer receives more than q inputs

I For every output, there is a reducer that receives all inputs
required to generate the output

Consideration: The existence of a mapping schema for a given q
distinguishes problems that can be solved in a single MapReduce job
from those that cannot.

e

MAPPING SCHEMA: EXAMPLE

Consider computing similarity of p pictures, divided into g groups.

I Number of outputs:
(p

2

)
=

p(p−1)
2 ≈ p2

2

I Reducer receives 2p/g inputs
+ necessary reducer size is q = 2p/g

I Replication rate is r = g− 1 ≈ g:

r = 2p/q

+ r inversely proportional to q which is common

I In a mapping schema for reducer size q:
I Each reducer is assigned exactly 2p/g inputs
I In all cases, every output is covered by some reducer

e

MAPPING SCHEMAS: NOT ALL INPUTS PRESENT

Example: Natural Join R(A,B) ./ S(B,C), where many possible tuples
R(a, b),S(b, c) are missing.

I Theoretically q = |A| · |C| (keys were b ∈ B)

I But in practice many tuples (a, b), (b, c) are missing for each b, so
q possibly much smaller than |A| · |C|

Main Consideration: One can increase q because of the missing inputs,
without that inputs do no longer fit into main memory in practice

e

MAPPING SCHEMAS: LOWER BOUNDS ON

REPLICATION RATE

Technique for proving lower bounds on replication rates

1. Prove upper bound g(q) on how many outputs a reducer with q
inputs can cover
+ This may be difficult in some cases

2. Determine total number of outputs O

3. Let there be k reducers with qi < q, i = 1, ..., k inputs
+ observe that

∑k
i=1 g(qi) needs to be no less than O

4. Manipulate the inequality
∑k

i=1 g(qi) ≥ O to get a lower bound
on
∑k

i=1 qi

5. Dividing the lower bound on
∑k

i=1 qi by number of inputs is
lower bound on replication rate

e

LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Recall that r ≤ 2p/q was upper bound on replication rate for
all-pairs problem

I Here: Lower bound on r that is half the upper bound

e

LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Steps from slide before:
I Step 1: reducer with q inputs cannot cover more than

(q
2

)
≈ q2/2

outputs
I Step 2: overall

(p
2

)
≈ p2/2 outputs must be covered

I Step 3: So, the inequality approximately evaluates as

k∑
i=1

q2
i /2 ≥ p2/2 ⇐⇒

k∑
i=1

q2
i ≥ p2

I Step 4: From q ≥ qi, we obtain

q
k∑

i=1

qi ≥ p2 ⇐⇒
k∑

i=1

qi ≥
p2

q

I Step 5: Noting that r = (
∑k

i=1 qi)/p, we obtain

r ≥ p
q

which is half the size of upper bound
e

Mining Data Streams: Introduction

e

MINING DATA STREAMS: INTRODUCTION I

I Situation: Data arrives in a stream (or several streams)
I Too much to be put in active storage (main memory, disk,

database)
I If not processed immediately or stored (in inaccesible archives),

lost forever

I Algorithms involve some summarization of stream(s); e.g.
I create useful samples of stream(s)
I filter the stream(s)
I focus on windows of appropriate length (last n elements)

e

DATA STREAMS: EXAMPLES

I Sensor data:
I Ocean data (temperature, height): terabytes per day
I Tracking cars (location, speed)

I Image data from satellites

I Internet/web traffic
I Switches that route data also decide on denial of service
I Tracking trends via analyzing clicks

e

DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

e

mmds.org

DATA STREAM QUERIES

I Standing queries
I need to be answered throughout time
I Answers need to be updated when they change
I Example: current or maximum ocean temperature

I Ad-hoc queries
I ask immediate questions
I Example: number of unique users of a web site in the last 4

weeks
I Not all data can be stored/processed

+ Only certain questions feasible
I Need to prepare for queries

+ For example, store data from sliding windows

e

DATA STREAM QUERIES

Issues
I Streams deliver elements rapidly: need to act quickly
I Thus, data to work on should fit in main memory
I New techniques required:
+ Compute approximate, not exact answers
+ Hashing is a useful technique

e

Sampling Elements from a Stream

e

SAMPLING ELEMENTS

I Situation:
I Select subsample from stream to store
I Subsample should be representative of stream as a whole

I Running Example:
I Search engine processes stream of search queries
I Stream consists of tuples (user,query,time)
I Can store only 1/10-th of data
I Stream Query: Fraction of repeated search queries?

e

RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Naive and bad approach

I For each query, generate random integer from [0, 9]

I Keep only queries if 0 was generated

I Scenario: Suppose a user has issued
I s queries one time
I d queries two times
I no queries more than two times

I Correct answer is d
d+s

e

RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Naive and bad approach

I Correct answer is d
d+s

I But on randomly selected queries, we see that
I Of one-time queries, s/10 appear to show once
I Of two-time queries, d/10× d/10 appear to show twice
I Of two-time queries, d(1/10× 9/10)× 2 appear to show once
I Resulting in estimate

0.01d
0.1s + 0.18d

=
d

10s + 19d

for unique queries, which is wrong for positive s, d

e

RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Better approach

I For each user (not query!), generate random integer from [0, 9]

I Keep 1/10th of users, e.g. if 0 was generated

I Implement randomness by hashing users to 10 buckets
I + avoids storing for each user whether he was in or out

I For maintaining sample for a/b-th of data, use b buckets, and
keep users in buckets 0 to a− 1

e

RUNNING EXAMPLE: PITFALL

Better approach

I General Sampling Problem: Generalize from one-valued key to
arbitrary-valued keys, keep a/b-th of (multi-valued) keys by the
same technique

I Reducing sample size: On increasing amounts of data, ratio of
data used for sample to be lowered

I When lowering is necessary, decrease a by 1, so 0 to a− 2 are still
accepted

I Remove all elements with keys hashing to a− 1

e

Filtering Streams

e

FILTERING STREAMS: MOTIVATING EXAMPLE

I Problem: Filter for data for which certain conditions apply

I Can be easy: data are numbers, select numbers of at most 10

I Challenge:

I There is a set S that is too large to fit in main memory
I Condition is too check whether stream elements belong to S

I Motivating Example: Email Spam

I Streamed data: pairs (email address, email text)
I Set S is one billion (109) approved (no spam!) addresses
I Only process emails from these addresses

+ need to determine whether arbitrary address belongs to them
I But, addresses cannot be stored in main memory
I Option 1: make use of disk accesses
I Option 2 (preferrable): Devise method without disk accesses, and

determines set membership right in (vast) majority of cases

I Solution: “Bloom Filtering”

e

BLOOM FILTERING: RUNNING EXAMPLE

I Assume that main memory is 1GB

I Bloom filtering: use main memory as bit array (of eight billion
bits)

I Devise hash function h that hashes email addresses to eight
billion buckets

I Hash each member of S (allowed email addresses) to one of the
buckets

I Set bits of hashed-to buckets to 1, leave other bits 0

I About 1/8-th of bits are 1

e

BLOOM FILTERING: RUNNING EXAMPLE

I Hash any new email address:
I If hashed-to bit is 1, classify address as no spam
I If hashed-to bit is 0, classify address as spam

I Each address hashed to 0 is indeed spam

I But: About 1/8-th of spam emails hash to 1

I So, not each address hashed to 1 is no spam

I 80% of emails are spam: filtering out 7/8-th is a big deal

I Filter cascade: filter out 7/8-th of (remaining) spam in each step

e

BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

I A bit array B of n bits, initially all zero

I A set S of m key values

I Hash functions h1, ..., hk hashing key values to bits of B

+ Number of buckets is n

A Bloom filter for set S = {x, y, z} using three hash functions
From Wikipedia, by David Eppstein

e

BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

I A bit array B of n bits, initially all zero

I A set S of m key values

I Hash functions h1, ..., hk hashing key values to bits of B

+ Number of buckets is n

Bloom Filter Workflow

I Initialization
I Take each key value K ∈ S
I Set all bits h1(K), ..., hk(K) to one

I Testing keys:
I Take key K to be tested
I Declare K to be a member of S if all h1(K), ..., hk(K) are one

e

BLOOM FILTERING: ANALYSIS

I If K ∈ S, all h1(K), ..., hk(K) are one, so K passes
I If K 6∈ S, all h1(K), ..., hk(K) could be one, so K mistakenly passes

+ False positive!
I Goal: Calculate probability of false positives
I For that, calculate probability that bit is zero after initialization

I Relates to throwing y darts at x targets, where
I Targets are bits in array, so x = n
I Darts are members in S (= m) times hash functions (= k), which makes

y = km

+ What is the probability that target is not hit by any dart?

e

BLOOM FILTERING: ANALYSIS

Throwing y darts at x targets:
I Probability that a given dart will not hit a given target is (x− 1)/x
I Probability that none of the y darts will hit a given target is

(
x− 1

x
)y = (1− 1

x
)x y

x (1)

I By (1− ε)1/ε = 1/e for small ε, we obtain that (1) is e−y/x

I x = n, y = km: probability that a bit remains 0 is e−km/n

I Would like to have fraction of 0 bits fairly large
I If k is about n/m, then probability of a 0 is e−1 (about 37%)
I In general, probability of false positive is k 1 bits, which evaluates as

(1− e−
km
n)k (2)

e

Counting Distinct Elements

The Flajolet-Martin Algorithm

e

COUNTING DISTINCT ELEMENTS: PROBLEM

I Situation: Stream elements chosen from universal set

I How many different elements have appeared in stream?

I Consider stream as a subset: determine cardinality (size) of
subset

I Example: Unique users of website
I Amazon: determine number of users from user logins
I Google: determine number of users from search queries

e

COUNTING DISTINCT ELEMENTS: PROBLEM

I Situation: Stream elements chosen from universal set

I How many different elements have appeared in stream?

I Obvious, but expensive:
I Keep stream elements in main memory
I Store them in efficient search structure (hash table, search tree)
I Works for sufficiently small amounts of distinct elements

I If too many distinct elements, or too many streams:
I Use more machines + Ok if affordable
I Use secondary memory (disk) + slow
I Here: Estimate number of distinct elements using much less main

memory than needed for storing all distinct elements
I The Flajolet-Martin algorithm does this job

e

THE FLAJOLET-MARTIN ALGORITHM

I Central idea: Hash elements to bit strings of sufficient length
I For example, to hash URL’s, 64-bit strings are sufficiently long

I Intuition:
I The more different elements, the more different bit strings
I The more different bit strings, the more “unusual” bit strings
I Unusual here = bit string ends in many zeroes

DEFINITION [TAIL LENGTH]

I Let h be the hash function that hashes stream elements a to bit
strings h(a)

I The tail length of h(a) is the number of zeroes in which it ends

e

THE FLAJOLET-MARTIN ALGORITHM

DEFINITION [TAIL LENGTH]

I Let h be the hash function that hashes stream elements a to bit
strings h(a)

I The tail length of h(a) is the number of zeroes in which it ends

FLAJOLET ALGORITHM

I Let A be the set of stream elements

I Let
R := max

a∈A
h(a) (3)

be the maximum tail length observed among stream elements

I Estimate 2R for the number of distinct elements in the stream

e

FLAJOLET-MARTIN ALGORITHM: EXAMPLE

Hashing user names to 8-bit strings

From towardsdatascience.com

e

towardsdatascience.com

FLAJOLET-MARTIN ALGORITHM: EXPLANATION

I Probability that bit string h(a) ends in r zeroes is 2−r

I Probability that none of m distinct elements has tail length at
least r is

(1− 2−r)m = ((1− 2−r)2r
)m2−r (1−ε)1/ε≈1/e

= e−m2−r
(4)

I Let Pm,r := 1− (1− 2−r)m ≈ 1− e−m2−r
be the probability that for

m stream elements, the maximum tail length R observed is at
least r.

I Conclude:
I For m >> 2r, it holds that Pm,r approaches 1
I For m << 2r, it holds that Pm,r approaches 0
I So, 2R is unlikely to be much larger or much smaller than m

e

FLAJOLET-MARTIN ALGORITHM: COMBINING

ESTIMATES

I Idea: Use several hash functions hk, k = 1, ...,K

I Combine their estimates Xk, k = 1, ...,K

I Pitfall 1: Averaging
I Let pr be the probability that the maximum tail length of hk is r
I One can compute that

pr ≥ 2pr−1 ≥ ... ≥ 2−r+1p1 ≥ 2−rp0

I So E(Xk), the expected value of Xk computes as

E(Xk) =
∑
r≥0

pr2r ≥ po

∑
r≥0

2−r2r = p0

∑
r≥0

1 =∞

I Therefore 1
K

∑K
k=1 E(Xk) the expected value of the average of the

Xk turns out to be infinite as well
I Conclusion: Overestimates spoil averaging

e

FLAJOLET-MARTIN ALGORITHM: COMBINING

ESTIMATES

I Idea: Use several hash functions hk, k = 1, ...,K

I Combine their estimates Xk, k = 1, ...,K

I Pitfall 2: Computing Medians
I The median is always a power of two

+ makes only very limited sense

I Solution:
I Group the hash functions into small groups and take averages

within groups
I Estimate m as median of group averages
I Groups should be of size C log2 m for some small C

I Space Requirements: Need to store only value of Xk, requiring
little space as a maximum

e

MATERIALS / OUTLOOK

I See Mining of Massive Datasets: section 2.6; sections 4.1–4.4

I As usual, see http://www.mmds.org/ in general for further
resources

I For deepening your understanding, consider voluntary
homework: read 2.6.7 and try to make sense of this

I Next lecture: “Mining Data Streams II / PageRank I”

I See Mining of Massive Datasets 4.5–4.7; 5.1–5.2

e

http://www.mmds.org/

