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Intro: A Data Stream Management Model

Sampling Data in a Stream

Filtering Streams: Bloom Filters

Counting Distinct Elements: Flajolet-Martin algorithm

Estimating Moments: Alon-Matias-Szegedy algorithm

Counting Ones in a Window: Datar-Gionis-Indyk-Motwani algorithm
Decaying Windows

Learning Goals: Understand these topics and get familiarized
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Complexity Theory for MapReduce
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MAPREDUCE: COMPLEXITY THEORY

Idea

» Reminder: A “reducer” is the execution of a Reduce task on a
single key and the associated value list

» Important considerations:

» Keep communication cost low
» Keep wall-clock time low
» Execute each reducer in main memory

» Intuition:

» The less communication, the less parallelism, so
» the more wall-clock time
» the more main memory needed

» Goal: Develop encompassing complexity theory
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REDUCER SIZE: INFORMAL EXPLANATION

Keys with all

K their values
ey—value

pairs &, [v,w,..])
Input &.v)

chunks

Combined
output

tasks by keys

Reduce
tasks

Reducer size: maximum length of list [v,w,...] after grouping keys

Adopted from mmds . org
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REDUCER SIZE

DEFINITION [REDUCER SIZE]:
The reducer size q is the upper bound on the number of values to
appear in the list of a single key.

Motivation
» Small reducer size forces to have many reducers

» Further creating many Reduce tasks implies high parallelism,
hence small wall-clock time

» Sufficiently small reducer size allows to have all data in main
memory

UNIVERSITAT
BIELEFELD



REPLICATION RATE

DEFINITION [REPLICATION RATE]:
The replication rate r is the number of all key-value pairs generated by
Map tasks, divided by the number of inputs.

Motivating Example

» One-pass matrix multiplication algorithm:

» Matrices involved are n x n
» Reminder: Key-value pairs for MN are ((i, k), (M,j, m;)),j =1,...,n
and ((i,k), (N,j,nx)),j =1,..,n

» Replication rate 7 is equal to n:
» Inputs are all m;; and n

» For each m;j, one generates key-value pairs for (i,k),k =1,...,n
» For each nj, one generates key-value pairs for (i,k),i =1,...,n

» Reducer size is 2n: for each key (i, k) there are n values from

each m;; and n values from each
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EXAMPLE: SIMILARITY JOIN

Situation
» Given large set X of elements

» Given similarity measure s(x,y) for measuring similarity
between x,y € X

» Measure is symmetric: s(x,y) = s(y, x)

» Output of the algorithm: all pairs x, y where s(x,y) > t for
threshold ¢

» Exemplary input: 1 million images (7, P;) where

» iisID of image
» P; is picture itself
» Each picture is IMB
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EXAMPLE: SIMILARITY JOIN

MapReduce: Bad Idea

>

>
>
»
>

Use keys (i, ) for pair of pictures (i, P;), (j, Pj)

Map: generates ((i,]), [P;, P;]) as input for

Reduce: computes s(P;, P;) and decides whether s(P;, P;) > t
Reducer size g is small: 2 MB; expected to fit in main memory

However, each picture makes part of 999 999 key-value pairs, so
r = 999999
Hence, number of bytes communicated from Map to Reduce is
10° x 999999 x 10° = 10"

that is one exabyte

Q
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EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

» Group images into ¢ groups, each of 10°/g pictures
» Map: For each (i, P;) generate ¢ — 1 key-value pairs

» Let u be group of P;

» Let v be one of the other groups

» Keys are sets {u, v} (set, so no order!)

» Valueis (i, P;)

Overall: ({u, v}, (i, P;)) as key-value pair

» Reduce: Consider key {u, v}

v

» Associated value list has 2 x % values

» Consider (i, P;) and (j, P;) when 7, j are from different groups

» Compute s(P;, P;)

» Compute s(P;, P;) for P;, P; from same group on processing keys
{u,u+1}
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EXAMPLE: SIMILARITY JOIN
MapReduce: Better Idea

» Replication rateis g — 1

» Each input element (i, P;) is turned into ¢ — 1 key-value pairs

. . 6
» Reducer size is 2 x %

» Number of values on list for reducer "
» Each value is about 1 MB yields 2 x % stored at Reducer node

» Example g = 1000:

» Input is 2 GB, fits into main memory

> Total number of bytes communicated: 10° x 999 x 10° =~ 10"

» 1000 times less than brute-force

» Half a million reducers: maximum parallelism at Reduce nodes

» Computation cost is independent of g

» Always all-vs-all comparison of pictures
» Computing s(P;, P;j) for all i, j
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MAPREDUCE: GRAPH MODEL

Goal: Proving lower bounds on replication rate as function of
reducer size, for many problems. Therefore:

Graph Model:

» Graph describes how outputs depend on inputs

» Reducers operate independently: each output has one reducer
that receives all input required to compute output

» Model foundation:

» There is a set of inputs
» There is a set of outputs
» Outputs depends on inputs: many-to-many relationship
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MAPREDUCE: GRAPH MODEL EXAMPLE

{P1.P>}
Py

{P1.P3}
Py

{P1.P4}
P3 {P>.P3}

{Py,Py}
Py

{P3.Py}

Graph for similarity join with four pictures

Adopted from mmds . org
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MAPREDUCE: GRAPH MODEL MATRIX
MULTIPLICATION

Graph Model Matrix Multiplication

» Multiplying n x n matrices M and N makes

> 21 inputs m;;, ny, 1 <i,j,k<n
> outputs pi := (MN)i,1 <ik<n

» Each output pj needs 2n inputs mj;, My, ..., M, and nyg, o, ...

» Each input relates to n outputs: e.g. m;j to pi1, pi2, ..., Pin
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MAPREDUCE: GRAPH MODEL MATRIX
MULTIPLICATION 11

a

b
c
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h

Input-output relationship graph for multiplying 2x2 matrices

Adopted from mmds . org
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MAPREDUCE: MAPPING SCHEMAS

A mapping schema with a given reducer size g is an assignment of
inputs to reducers such that

» No reducer receives more than g inputs

» For every output, there is a reducer that receives all inputs
required to generate the output

Consideration: The existence of a mapping schema for a given g
distinguishes problems that can be solved in a single MapReduce job
from those that cannot.
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MAPPING SCHEMA: EXAMPLE

Consider computing similarity of p pictures, divided into g groups.

» Number of outputs: (§) = 221 ~ %2

» Reducer receives 2p/g inputs
1= necessary reducer size is g = 2p/g

» Replicationrateisr =g -1~ g:

r=2p/q
i v inversely proportional to g which is common

» In a mapping schema for reducer size g:

» Each reducer is assigned exactly 2p/g inputs
» In all cases, every output is covered by some reducer
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MAPPING SCHEMAS: NOT ALL INPUTS PRESENT

Example: Natural Join R(A, B) 1 S(B, C), where many possible tuples
R(a,b),S(b, c) are missing.

» Theoretically g = |A]| - |C| (keys were b € B)

» But in practice many tuples (a,b), (b, ¢) are missing for each b, so
g possibly much smaller than |A| - |C|

Main Consideration: One can increase g because of the missing inputs,
without that inputs do no longer fit into main memory in practice
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MAPPING SCHEMAS: LOWER BOUNDS ON
REPLICATION RATE

Technique for proving lower bounds on replication rates

1. Prove upper bound g(g7) on how many outputs a reducer with q
inputs can cover
= This may be difficult in some cases

2. Determine total number of outputs O

3. Let there be k reducers with ¢; < g,i =1, ...,k inputs
= observe that Zi-;l g(gi) needs to be no less than O

4. Manipulate the inequality Zi-;l g(gi) > O to get a lower bound
on Z?:l qi

5. Dividing the lower bound on Zle gi by number of inputs is
lower bound on replication rate
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LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

» Recall that r < 2p/q was upper bound on replication rate for
all-pairs problem

» Here: Lower bound on r that is half the upper bound
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LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM
» Steps from slide before:

>

>
>
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Step 1: reducer with g inputs cannot cover more than (1) ~ 4°/2
outputs

Step 2: overall (;) ~ p*/2 outputs must be covered

Step 3: So, the inequality approximately evaluates as

k k
Mgz = > gy
i=1 i=1

Step 4: From g > g;, we obtain

k pz

DIELEEE A

i=1 i=1

Step 5: Noting that r = (Z:.;l gi)/p, we obtain

rzg
q

which is half the size of upper bound



Mining Data Streams: Introduction
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MINING DATA STREAMS: INTRODUCTION I

» Situation: Data arrives in a stream (or several streams)

» Too much to be put in active storage (main memory, disk,
database)

» If not processed immediately or stored (in inaccesible archives),
lost forever

» Algorithms involve some summarization of stream(s); e.g.

» create useful samples of stream(s)
» filter the stream(s)
» focus on windows of appropriate length (last 1 elements)
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DATA STREAMS: EXAMPLES

» Sensor data:

» Ocean data (temperature, height): terabytes per day
» Tracking cars (location, speed)

» Image data from satellites

» Internet/web traffic

» Switches that route data also decide on denial of service
» Tracking trends via analyzing clicks
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DATA STREAM MANAGEMENT SYSTEM

Ad-hoc

Queries
Streams entering ¢
1,5,2,7,4,0,3,5 Standing Output streams

q.w,e,r,ty,uio —= Queries

0,1,1,0,1,0,0,0 —* s

tream

Processor

-— time

Limited
Working
Storage

Archival

Storage

A data stream management system
Adopted from mmds . org
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DATA STREAM QUERIES

» Standing queries
» need to be answered throughout time
» Answers need to be updated when they change
» Example: current or maximum ocean temperature
» Ad-hoc queries
» ask immediate questions
» Example: number of unique users of a web site in the last 4
weeks
» Not all data can be stored/processed
i Only certain questions feasible
» Need to prepare for queries
1= For example, store data from sliding windows
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DATA STREAM QUERIES

Issues
» Streams deliver elements rapidly: need to act quickly
» Thus, data to work on should fit in main memory
» New techniques required:
1= Compute approximate, not exact answers
1= Hashing is a useful technique
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Sampling Elements from a Stream
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SAMPLING ELEMENTS

» Situation:

» Select subsample from stream to store

» Subsample should be representative of stream as a whole
» Running Example:

» Search engine processes stream of search queries

» Stream consists of tuples (user,query,time)

» Can store only 1/10-th of data

» Stream Query: Fraction of repeated search queries?
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RUNNING EXAMPLE: PITFALL

» Running Example:

» Stream Query: Fraction of repeated search queries?

Naive and bad approach

» For each query, generate random integer from [0, 9]
» Keep only queries if 0 was generated

» Scenario: Suppose a user has issued

» 5 queries one time
» d queries two times
» no queries more than two times

d

» Correct answer is ts
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RUNNING EXAMPLE: PITFALL

» Running Example:

» Stream Query: Fraction of repeated search queries?

Naive and bad approach

d

» Correct answer is a+s

» But on randomly selected queries, we see that

» Of one-time queries, s/10 appear to show once

» Of two-time queries, d/10 x d/10 appear to show twice

» Of two-time queries, d(1/10 x 9/10) x 2 appear to show once
» Resulting in estimate

001d _  d
0.1s+0.184 _ 10s + 194

for unique queries, which is wrong for positive s, d
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RUNNING EXAMPLE: PITFALL

» Running Example:

» Stream Query: Fraction of repeated search queries?

Better approach

» For each user (not query!), generate random integer from [0, 9]
» Keep 1/10th of users, e.g. if 0 was generated

» Implement randomness by hashing users to 10 buckets

» = avoids storing for each user whether he was in or out

» For maintaining sample for a/b-th of data, use b buckets, and
keep users in buckets O toa — 1
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RUNNING EXAMPLE: PITFALL

Better approach

» General Sampling Problem: Generalize from one-valued key to
arbitrary-valued keys, keep a/b-th of (multi-valued) keys by the
same technique

» Reducing sample size: On increasing amounts of data, ratio of
data used for sample to be lowered

» When lowering is necessary, decrease a by 1, so 0 to a — 2 are still
accepted
» Remove all elements with keys hashing toa — 1
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Filtering Streams
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FILTERING STREAMS: MOTIVATING EXAMPLE

» Problem: Filter for data for which certain conditions apply

» Can be easy: data are numbers, select numbers of at most 10

» Challenge:

>
>

There is a set S that is too large to fit in main memory
Condition is too check whether stream elements belong to S

» Motivating Example: Email Spam

>
>
>

>
>
>

Streamed data: pairs (email address, email text)

Set S is one billion (10°) approved (no spam!) addresses

Only process emails from these addresses

1= need to determine whether arbitrary address belongs to them
But, addresses cannot be stored in main memory

Option 1: make use of disk accesses

Option 2 (preferrable): Devise method without disk accesses, and
determines set membership right in (vast) majority of cases

» Solution: “Bloom Filtering”
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BLOOM FILTERING: RUNNING EXAMPLE

» Assume that main memory is 1GB

Bloom filtering: use main memory as bit array (of eight billion
bits)

Devise hash function / that hashes email addresses to eight
billion buckets

Hash each member of S (allowed email addresses) to one of the
buckets

Set bits of hashed-to buckets to 1, leave other bits 0

» About 1/8-th of bits are 1

UNIVERSITAT
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BLOOM FILTERING: RUNNING EXAMPLE

vV v v.vyYy

Hash any new email address:

» If hashed-to bit is 1, classify address as no spam
» If hashed-to bit is 0, classify address as spam

Each address hashed to 0 is indeed spam

But: About 1/8-th of spam emails hash to 1

So, not each address hashed to 1 is no spam

80% of emails are spam: filtering out 7/8-th is a big deal

Filter cascade: filter out 7/8-th of (remaining) spam in each step
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BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

» A bit array B of n bits, initially all zero
» A set S of m key values

» Hash functions hy, ..., b hashing key values to bits of B

= Number of buckets is n

{xy,2z}

[oftfoft]t]t ofofofofoJt]o]t]o]of1]0]

A Bloom filter for set S = {x,y, z} using three hash functions

From Wikipedia, by David Eppstein
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BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

» A bit array B of n bits, initially all zero
> A set S of m key values

» Hash functions hy, ..., by hashing key values to bits of B

= Number of buckets is n

Bloom Filter Workflow

» [nitialization

» Take each key value K € S
» Set all bits 11 (K), ..., i (K) to one

» Testing keys:

> Take key K to be tested

» Declare K to be a member of S if all i1 (K), ..., it(K) are one
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BLOOM FILTERING: ANALYSIS

If K € S, all hi(K), ..., i (K) are one, so K passes

If K ¢S, all hi(K), ..., i (K) could be one, so K mistakenly passes
v False positive!

Goal: Calculate probability of false positives

» For that, calculate probability that bit is zero after initialization

Relates to throwing y darts at x targets, where

» Targets are bits in array, sox = n
» Darts are members in S (= m) times hash functions (= k), which makes
y=km

1= What is the probability that target is not hit by any dart?

UNIVERSITAT
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BLOOM FILTERING: ANALYSIS

Throwing y darts at x targets:

v

Probability that a given dart will not hit a given targetis (x — 1)/x

v

Probability that none of the y darts will hit a given target is

(E)y —1- 1)*%

X X

@

By (1 — €)/¢ = 1/e for small ¢, we obtain that (1) is e ™*/*
x = n,y = km: probability that a bit remains 0 is e~"/"
Would like to have fraction of 0 bits fairly large

If k is about 7/m, then probability of a 0 is e~" (about 37%)

In general, probability of false positive is k 1 bits, which evaluates as

vVvyVvyyVvyy

(1—e ) @)
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Counting Distinct Elements
The Flajolet-Martin Algorithm
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COUNTING DISTINCT ELEMENTS: PROBLEM

» Situation: Stream elements chosen from universal set
» How many different elements have appeared in stream?

» Consider stream as a subset: determine cardinality (size) of
subset

» Example: Unique users of website

» Amazon: determine number of users from user logins
» Google: determine number of users from search queries
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COUNTING DISTINCT ELEMENTS: PROBLEM

» Situation: Stream elements chosen from universal set
» How many different elements have appeared in stream?

» Obvious, but expensive:

» Keep stream elements in main memory
» Store them in efficient search structure (hash table, search tree)
» Works for sufficiently small amounts of distinct elements

» If too many distinct elements, or too many streams:

» Use more machines % Ok if affordable

» Use secondary memory (disk) & slow

» Here: Estimate number of distinct elements using much less main
memory than needed for storing all distinct elements

» The Flajolet-Martin algorithm does this job
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THE FLAJOLET-MARTIN ALGORITHM

» Central idea: Hash elements to bit strings of sufficient length
» For example, to hash URL’s, 64-bit strings are sufficiently long
» [Intuition:

» The more different elements, the more different bit strings
» The more different bit strings, the more “unusual” bit strings
» Unusual here = bit string ends in many zeroes

DEFINITION [TAIL LENGTH]

» Let i be the hash function that hashes stream elements a to bit
strings h(a)

» The tail length of h(a) is the number of zeroes in which it ends
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THE FLAJOLET-MARTIN ALGORITHM

DEFINITION [TAIL LENGTH]

» Let h be the hash function that hashes stream elements a to bit
strings h(a)

» The tail length of h(a) is the number of zeroes in which it ends

FLAJOLET ALGORITHM

» Let A be the set of stream elements

> Let

R:= max h(a) ©)]

be the maximum tail length observed among stream elements

» Estimate 28 for the number of distinct elements in the stream
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FLAJOLET-MARTIN ALGORITHM: EXAMPLE

User

sean
todd
aaron
kat

15 users

sara

linda

Because the longest leading eric
sequence of zeros is 4 bits long, jack
we can say that there may be

o steph
approximately 16 users

terry
tim
wanda
chris

jane

Hashed
Bitstring
01111101
11010001
10000111
01110001
01011010
01000001
01010011
00001001
01101001
10001100
00111110
00010000
11110001
01101110
00010010

- Approximate Count = 2% = 16

Hashing user names to 8-bit strings

From towardsdatascience.com
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FLAJOLET-MARTIN ALGORITHM: EXPLANATION

» Probability that bit string &(a) ends in r zeroes is 27"

» Probability that none of m distinct elements has tail length at
least r is

—r

r —r —€ 1/6%
(=27 = (=27 Py O Te

> LetP,,:=1—(1-27")"~1-e"" be the probability that for
m stream elements, the maximum tail length R observed is at
least r.

» Conclude:

» Form >> 2, it holds that Py, approaches 1
» Form << 2, it holds that P, approaches 0
» So,2Ris unlikely to be much larger or much smaller than m
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FLAJOLET-MARTIN ALGORITHM: COMBINING
ESTIMATES

» [dea: Use several hash functions i, k=1, ...,K

» Combine their estimates X3, k=1, ...,K

» Pitfall 1: Averaging
» Let p; be the probability that the maximum tail length of /y is r
» One can compute that

pr>2p1 > .. >27 g > 27

» So E(Xy), the expected value of X; computes as

EX) =Y p2 >p» 272 =p» 1=00

r>0 r>0 r>0

Therefore & le E(Xk) the expected value of the average of the
X} turns out to be infinite as well

Conclusion: Overestimates spoil averaging

v

v
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FLAJOLET-MARTIN ALGORITHM: COMBINING
ESTIMATES

» [dea: Use several hash functions i, k=1, ...,K
» Combine their estimates X,k =1, ..., K

» Pitfall 2: Computing Medians

» The median is always a power of two
1= makes only very limited sense

» Solution:
» Group the hash functions into small groups and take averages
within groups
» Estimate m as median of group averages
» Groups should be of size Clog, m for some small C

» Space Requirements: Need to store only value of Xj, requiring
little space as a maximum
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MATERIALS / OUTLOOK

» See Mining of Massive Datasets: section 2.6; sections 4.1-4.4

» Asusual, see http://www.mmds.org/ in general for further
resources

» For deepening your understanding, consider voluntary
homework: read 2.6.7 and try to make sense of this

» Next lecture: “Mining Data Streams II / PageRank I”
» See Mining of Massive Datasets 4.5-4.7;5.1-5.2
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