
Map Reduce / Workflow Systems II

Alexander Schönhuth

University Bielefeld
May 28, 2020



LEARNING GOALS TODAY

I Get to know idea of workflow systems and some examples

I Understand the definition of communication cost

I Understand the definition of wall clock time

I Get to know theory and intuition of complexity theory for
MapReduce

e



Workflow Systems

e



WORKFLOW SYSTEMS: INTRODUCTION

I Workflow systems generalize MapReduce

I Just as much as MapReduce:
I They’re built on distributed file systems
I They orchestrate large numbers of tasks with only small input

provided by the user
I They automatically handle failures

I In addition:
I Single tasks can do other things than just Map or Reduce
I Tasks interact in more complex ways

e



WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a → b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks

e



WORKFLOW SYSTEMS

Figure: More complex workflow than MapReduce

Adopted from mmds.org

e

mmds.org


WORKFLOW SYSTEMS: ACYCLIC FLOW GRAPH

I It is easier to deal with acyclic flow graphs
I This means that one cannot return to functions

I Blocking Property: tasks only generate output upon completion
I Blocking property easily applicable only in acyclic workflows

I Simple Example of Workflow: Cascades of Map-Reduce jobs

e



POPULAR WORKFLOW SYSTEMS

I Spark: developed by UC Berkeley

I TensorFlow: Google’s system, primarily developed for neural
network computations

I Pregel: also by Google, for handling recursive (i.e. cyclic)
workflows

I Snakemake: easy-to-use workflow system, inspired by MakeFile
logic/functionality

e



SPARK

I State-of-the-art workflow system:
I Very efficient with failures
I Very efficient in grouping tasks among nodes
I Very efficient in scheduling execution of functions

I Basic concept: Resilient Distributed Dataset (RDD)
I Generalizes key-value pair type of data: RDD is a file of objects of

one type
I Distributed: broken into chunks held at different nodes
I Resilient: recoverable from losses of (even all) chunks

I Transformations (steps of functions) turn RDD into others

I Actions turn other data (from surrounding file system) into
RDD’s and vice versa

e



SPARK: TRANSFORMATIONS

I Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

I Turns one object into exactly another object, but not several ones
I Remember: Map from MapReduce generates several key-value

pairs from one object

I Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types

I Filter takes a predicate as input
I Predicate is true or false for elements of RDD
I So RDD is filtered for objects for which predicate applies
I Yields a ’filtered RDD’

e



SPARK: REDUCE AND RELATIONAL DATABASE

OPERATIONS

I Reduce is an action, and takes as parameter a function that
I applies to two elements of a particular type T
I returns one element of type T
I and is applied repeatedly until a single element remains
I Works for associative and commutative operations

I Many Relational Database Operations are implemented in Spark:
I Process RDD’s reflecting tuples of relations
I Examples: Join, GroupByKey

e



SPARK: IMPLEMENTATION DETAILS

I Spark is similar like MapReduce in handling data (chunks are
called splits)

I Lazy evaluation allows to apply several transformations
consecutively to splits:

I No intermediate formation of entire RDD’s
I Contradicts blocking property, because partial output is passed on

to new functions

I Resilience (despite lazy evaluation) is maintained by lineages of
RDD’s

I Beneficial trade-off of more complex recovery of failures versus
greater speed overall

I Note that greater speed reduces probability of failures

e



TENSORFLOW

I Open-source system developed (initially) by Google for
machine-learning applications

I Programming interface for writing sequences of steps

I Data are tensors, which are multidimensional matrices

I Power comes from built-in operations applicable to tensors

e



RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures need to be reorganized

e



RECURSIVE WORKFLOWS: EXAMPLE

I Directed graph stored as relation E(X,Y), listing arcs from X to Y

I Want to compute relation P(X,Y), listing paths from X to Y

I P is transitive closure of E (see below)

I Algorithm:
I Start: P(X,Y) = E(X,Y)
I Iteration: Add to P tuples

πX,Y(P(X,Z) ./ P(Z,Y)) (1)

as pairs of nodes X and Y s.t. for some node Z there is path from X
to Z and from Z to Y

e



TRANSITIVE CLOSURE: DEFINITION

DEFINITION [TRANSITIVE CLOSURE]:
Let R(X,Y) be a relation.

I R(X,Y) is transitive if (x, z) ∈ R and (z, y) ∈ R imply that
(x, y) ∈ R as well

I The transitive closure R(X,Y) of R(X,Y) is the smallest set of tuples
to be added to R(X,Y) that renders the resulting set of tuples
transitive

e



EXAMPLE: TRANSITIVE CLOSURE

I n Join tasks, corresponding to
buckets of hash function h

I Tuple P(a, b) is assigned to
Join tasks h(a) and h(b)

I i-th Join tasks receives P(a, b)
I Store P(a, b) locally
I If h(a) = i look for tuples

P(x, a) and produce P(x, b)
I If h(b) = i look for tuples

P(b, y) and produce P(a, y)

Transitive closure by recursive tasks
Adopted from mmds.org

e

mmds.org


RECURSIVE WORKFLOWS: EXAMPLE

I m Dup-elim tasks,
corresponding to buckets of
hash function g

I P(c, d) (as output of Join task)
is sent to Dup-elim task
j = g(c, d)

I Dup-elim task j checks
whether P(c, d) was received
before

I If yes, P(c, d) is ignored
(and not stored)

I If not, P(c, d) is stored
locally,

I and sent to Join tasks h(c)
and h(d)

Transitive closure by recursive tasks
Adopted from mmds.org

e

mmds.org


RECURSIVE WORKFLOWS: EXAMPLE

I Every Join task has m output
files

I Every Dup-elim task has n
output files

I Initially, tuples E(a, b) are sent
to Dup-elim tasks g(a, b)

Transitive closure by recursive tasks
Adopted from mmds.org

e

mmds.org


RECURSIVE WORKFLOWS: FAILURE HANDLING

I Iterated MapReduce: Application is repeated execution /
sequence of MapReduce job(s) (“HaLoop”)

I Spark Approach: Lazy evaluation, lineage mechanisms, option to
store intermediate results

I Bulk Synchronous Systems: Graph-based model using “periodic
checkpointing”

e



BULK SYNCHRONOUS SYSTEMS: PREGEL

I System views data as graph:
I Nodes (roughly) reflect tasks
I Arcs: from nodes whose output (messages) are input to other

nodes

I Supersteps:
I All messages received by any of the nodes from the previous

superstep are processed
I All messages generated are sent to their destinations

I Advantage: Sending messages means communication costs,
bundling them reduces costs

I Failure Management: Checkpointing entire computation by
making copy after each superstep

I May be beneficial to checkpoint periodically after number of
supersteps

e



SNAKEMAKE

I Create reproducible and scalable data analyses

I Workflows described in human readable, Python based
language

I Seamlessly scale to server, cluster, grid and cloud environments

I Integrating descriptions of required software, deployable to any
execution environment

e



The Communication-Cost Model

e



COMMUNICATION COST

Situation

I Algorithm implemented by acyclic network of tasks:
I Map tasks feeding Reduce tasks
I Cascade of several MapReduce jobs
I More general workflow structure (e.g. Fig. 1)

DEFINITION [COMMUNICATION COST]:

I The communication cost of a task is the size of the input it receives

I The communication cost of an algorithm is the sum of the
communication costs of its tasks

e



COMMUNICATION COST

Why Communication Cost?

I Computing communication cost is the way to measure the complexity
of distributed algorithm

I Neglect time necessary for tasks to execute

I Importance of communication cost:
I Tasks tend to be simple (often linear in size of input)
I Interconnect speed of compute cluster (typically 1 Gbit/sec) slow

compared with speed processors execute instructions
I Often there is competition for the interconnect when several nodes are

communicating
I Moving data from disk to memory may exceed runtime

Why not Output Size?

I Output often is input to another task anyway
I Output rarely large in comparison with input or intermediate data

e



REMINDER: NATURAL JOIN

Natural Join: R(A,B) ./ S(B,C)

I Map: For each tuple t = (a, b) from R, generate key-value pair
(b, (R, a)). For each tuple (b, c) from S, generate (b, (S, c)).

I Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

I Construct all pairs of values where first component is like (R, a)
and second component is like (S, c), yielding triples
(b, (R, a), (S, c))

I Turn triples into triples (a, b, c) being output

e



COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A,B) ./ S(B,C) with R,S of sizes r and s.

I Map: Chunks of files R,S are input to Map tasks
+ communication cost of Map is r + s (in practice mostly disk to
memory)

I Reduce: Input to Reduce tasks is all (r + s many) key-value pairs
generated by Map tasks
+ communication cost for Reduce is O(r + s)

I Output of Reduce could be much larger than O(r + s) (up to
O(rs)), depending on how many tuples are to be generated for
each key b

e



COMMUNICATION COST EXAMPLE: R(A,B) ./ S(B,C)

Let sizes of relations R and S be r and s.

Map

I Each chunk of the files holding R and S is fed to one task
+ Communication cost is r + s

I Nodes hold chunks already from file distribution step: no
internode communication, only disk-to-memory costs

I All Map tasks perform a simple transformation, so only
negligible computation cost

I Output about as large as input

e



COMMUNICATION COST EXAMPLE: R(A,B) ./ S(B,C)

Let sizes of relations R and S be r and s.

Reduce

I Receives and divides input into tuples from R and S

I For each key, pairs each tuple from R with the ones from S

I Output size can vary: can be larger or smaller than O(r + s)
I Many different B-values: output is small
I Few B-values: output much larger

I Output large: computation cost could be much larger than
O(r + s)

I Often output is further subsequently aggregated at further
nodes
+ Communication cost greater than computation cost

e



WALL-CLOCK TIME

DEFINITION [WALL-CLOCK TIME]:
The wall-clock time is defined to be the time for the entire parallel
algorithm to finish.
Example: Careless reasoning could make one assign all tasks to one
node, which minimizes communication cost. But the wall-clock time
is (likely to be) at its maximum.

e



EXAMPLE: MULTIWAY JOIN

Consider computing R(A,B) ./ S(B,C) ./ T(C,D). For simplicity, let p
be the probability that both an R- and and S-tuple agree on B and that
an S- and a T-tuple agree on C

I Joining R and S first
I Communication cost is O(r + s) (see before)
I Size of output is prs
I Hence joining R ./ S with T is O((r + s) + (t + prs))

I Joining S and T first analogously yields O((s + t) + (r + pst))

e



R(A,B) ./ S(B,C) ./ T(C,D) IN ONE MAPREDUCE

Let p be the probability that both an R- and an S-tuple agree on B and
that an S- and a T-tuple agree on C.

I Hash B- and C-values, using functions h and g

I Let b and c be the number of buckets for h and g

I Let k be the number of Reducers; require that bc = k
I Each reducer corresponds to a pair of buckets
I Reducer corresponding to bucket pair (i, j) joins tuples

R(u, v), S(v,w),T(w, x) whenever h(v) = i, g(w) = j

I Hence Map tasks send R- and T-tuples to more than one reducer
I R-tuples R(u, v) go to all reducers (h(v), y)

+ goes to c reducers
I T-tuples T(w, x) go to all reducers (z, g(w))

+ goes to b reducers

e



MULTIWAY JOIN: ONE MAPREDUCE II

Sixteen reducers for a 3-way join
Adopted from mmds.org

I h(v) = 2, g(w) = 1

I S-tuple S(v,w) goes to reducer for key (2, 1)

I R-tuple R(u, v) goes to reducers for keys (2, 0), ..., (2, 3)

I T-tuple T(w, x) goes to reducers for keys (1, 0), ..., (1, 3)
e

mmds.org


MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Moving tuples to proper reducers is sum of
I s to send tuples S(v,w) to (h(v), g(w))
I rc to send tuples R(u, v) to (h(v), y) for each of the c possible

g(w) = y
I bt to send tuples T(w, x) to (z, g(w)) for each of the b possible

h(b) = z

I Additional (constant) cost r + s + t to make each tuple input to
one of the Map tasks (constant)

e



MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Goal: Select b and c, subject to bc = k, to minimize s + cr + bt

I Using Lagrangian multiplier λ yields to solve for
I r − λb = 0
I t − λc = 0

I It follows that rt = λ2bc, that is rt = λ2k, yielding further λ =
√

rt
k

I So, minimum communication cost at c =
√

kt
r and b =

√
kr
t

I Substituting into s + cr + bt yields s + 2
√

krt

I Adding r + s + t yields r + 2s + t + 2
√

krt, which is usually
dominated by 2

√
krt

e



MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 2.4–2.6

I For deepening your understanding, voluntary homework: please
read through 2.6.7

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Mining Data Streams”

I See Mining of Massive Datasets 4.1–4.7

e

http://www.mmds.org/

