Map Reduce / Workflow Systems II

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

B Faculty of Technology

University Bielefeld
May 28, 2020

LEARNING GOALS TODAY

» Get to know idea of workflow systems and some examples
» Understand the definition of communication cost
» Understand the definition of wall clock time

> Get to know theory and intuition of complexity theory for
MapReduce

UNIVERSITAT
BIELEFELD

Workflow Systems

UNIVERSITAT
BIELEFELD

WORKFLOW SYSTEMS: INTRODUCTION

» Workflow systems generalize MapReduce

» Just as much as MapReduce:

» They're built on distributed file systems

» They orchestrate large numbers of tasks with only small input
provided by the user

» They automatically handle failures

» In addition:

» Single tasks can do other things than just Map or Reduce
» Tasks interact in more complex ways

UNIVERSITAT
BIELEFELD

WORKFLOW SYSTEMS: FLOW GRAPH

» A function represents arbitrary functionality within a workflow

» and not just 'Map’ or 'Reduce’
» Functions are represented as nodes of the flow graph

» Arcsa — b for two functions a, b mean that the output of
function a is provided to function b as input

» Note: The same function could be used by many tasks

UNIVERSITAT
BIELEFELD

WORKFLOW SYSTEMS

\/

Figure: More complex workflow than MapReduce

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

mmds.org

WORKFLOW SYSTEMS: ACYCLIC FLOW GRAPH

» It is easier to deal with acyclic flow graphs

» This means that one cannot return to functions

» Blocking Property: tasks only generate output upon completion

» Blocking property easily applicable only in acyclic workflows

» Simple Example of Workflow: Cascades of Map-Reduce jobs

UNIVERSITAT
BIELEFELD

POPULAR WORKFLOW SYSTEMS

» Spark: developed by UC Berkeley

» TensorFlow: Google’s system, primarily developed for neural
network computations

» Pregel: also by Google, for handling recursive (i.e. cyclic)
workflows

» Snakemake: easy-to-use workflow system, inspired by MakeFile
logic/functionality

UNIVERSITAT
BIELEFELD

SPARK

» State-of-the-art workflow system:

» Very efficient with failures
» Very efficient in grouping tasks among nodes
» Very efficient in scheduling execution of functions

» Basic concept: Resilient Distributed Dataset (RDD)

» Generalizes key-value pair type of data: RDD is a file of objects of
one type

» Distributed: broken into chunks held at different nodes

» Resilient: recoverable from losses of (even all) chunks

» Transformations (steps of functions) turn RDD into others

» Actions turn other data (from surrounding file system) into
RDD’s and vice versa

UNIVERSITAT
BIELEFELD

SPARK: TRANSFORMATIONS

» Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

» Turns one object into exactly another object, but not several ones
» Remember: Map from MapReduce generates several key-value
pairs from one object

» Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types

» Filter takes a predicate as input

» Predicate is true or false for elements of RDD
» So RDD is filtered for objects for which predicate applies
» Yields a 'filtered RDD’

UNIVERSITAT
BIELEFELD

SPARK: REDUCE AND RELATIONAL DATABASE
OPERATIONS

» Reduce is an action, and takes as parameter a function that

» applies to two elements of a particular type T

» returns one element of type T

» and is applied repeatedly until a single element remains
» Works for associative and commutative operations

» Many Relational Database Operations are implemented in Spark:

» Process RDD'’s reflecting tuples of relations
» Examples: Join, GroupByKey

UNIVERSITAT
BIELEFELD

SPARK: IMPLEMENTATION DETAILS

Spark is similar like MapReduce in handling data (chunks are
called splits)

Lazy evaluation allows to apply several transformations
consecutively to splits:

» No intermediate formation of entire RDD’s
» Contradicts blocking property, because partial output is passed on
to new functions

Resilience (despite lazy evaluation) is maintained by lineages of
RDD’s

Beneficial trade-off of more complex recovery of failures versus
greater speed overall

» Note that greater speed reduces probability of failures

UNIVERSITAT

BIELEFELD

TENSORFLOW

» Open-source system developed (initially) by Google for
machine-learning applications

» Programming interface for writing sequences of steps
» Data are tensors, which are multidimensional matrices

» Power comes from built-in operations applicable to tensors

UNIVERSITAT
BIELEFELD

RECURSIVE WORKFLOWS

Examples:

» Calculating fixed-points (Mv = v for a matrix M and v) by
iterative application of M to v

» Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

» Lack of blocking property:

» Flow graphs have cycles

» Tasks may provide their output as input to other tasks whose
output in turn results in more input to the first task

» So generation of output only when task is done does not work

» Recovery from failures need to be reorganized

UNIVERSITAT
BIELEFELD

RECURSIVE WORKFLOWS: EXAMPLE

» Directed graph stored as relation E(X, Y), listing arcs from X to Y
» Want to compute relation P(X, Y), listing paths from X to Y
» P is transitive closure of E (see below)

» Algorithm:

» Start: P(X,Y) = E(X,Y)
» [teration: Add to P tuples

mx.x(P(X,Z) = P(Z,Y)) 1)

as pairs of nodes X and Y s.t. for some node Z there is path from X
toZand fromZtoY

UNIVERSITAT
BIELEFELD

TRANSITIVE CLOSURE: DEFINITION

DEFINITION [TRANSITIVE CLOSURE]:
Let R(X,Y) be a relation.

» R(X,Y) is transitive if (x,z) € R and (z,y) € R imply that
(x,y) € R as well

» The transitive closure R(X,Y) of R(X,Y) is the smallest set of tuples
to be added to R(X,Y) that renders the resulting set of tuples
transitive

UNIVERSITAT
BIELEFELD

EXAMPLE: TRANSITIVE CLOSURE

» 1 Join tasks, corresponding to
buckets of hash function

» Tuple P(a, b) is assigned to
Join tasks h(a) and h(b)

» i-th Join tasks receives P(a, b)

» Store P(a, b) locally

» If h(a) = ilook for tuples
P(x,a) and produce P(x, b)

» If h(b) = ilook for tuples
P(b,y) and produce P(a, y)

UNIVERSITAT
BIELEFELD

Join Dup—elim
task K
0
Join Dup-elim To join task h(c)
task task
1 1 T
/

/

/

o Ple.d) if never
Pab) if Join — seen before
hea =ior =k \
() — i i)

/ To join task h(d)
e

Transitive closure by recursive tasks

Adopted from mnds . org

mmds.org

RECURSIVE WORKFLOWS: EXAMPLE

» m Dup-elim tasks, o Dup-etim
. lask lask
corresponding to buckets of 5 %
hash function g - Doam] Tojomiusklo
task task T
> . 1 1 |

P(c,d) (as output of Join task)
is sent to Dup-elim task

j=2gle,d))
B & d) J i P(c.d) if never
. . Pb)if om | seen before
» Dup-elim task j checks :,I“:ii.m — \
whether P(c,d) was received) /
\ /
before \ i //
» If yes, P(c,d) is ignored \) ogmasn
(and not stored) - -
» If not, P(c,d) is stored I
locally,
> and sent to Join tasks h(c) Transitive closure by recursive tasks
and h(d) Adopted from mnds . org
UNIVERSITAT

BIELEFELD

mmds.org

RECURSIVE WORKFLOWS: EXAMPLE

Toin Dup-elim
task task
0 0
Join Dup-elim To join task)
task task
1 1 T
/

» Every Join task has m output : /
files P it /
gled) - J -
i A P(e.d) if never
» Every Dup-elim task has n ravit — \ seen before
. () — i .
output files \ : /
» Initially, tuples E(a, b) are sent | | /
to Dup-elim tasks g(a, b) \\ /To,m,,mkmd)

7
i _—

Transitive closure by recursive tasks

Adopted from mnds . org

UNIVERSITAT
BIELEFELD

mmds.org

RECURSIVE WORKFLOWS: FAILURE HANDLING

» Iterated MapReduce: Application is repeated execution /
sequence of MapReduce job(s) (“HaLoop”)

» Spark Approach: Lazy evaluation, lineage mechanisms, option to
store intermediate results

» Bulk Synchronous Systems: Graph-based model using “periodic
checkpointing”

UNIVERSITAT
BIELEFELD

BULK SYNCHRONOUS SYSTEMS: PREGEL

> System views data as graph:

» Nodes (roughly) reflect tasks
» Arcs: from nodes whose output (messages) are input to other
nodes

» Supersteps:

» All messages received by any of the nodes from the previous
superstep are processed
» All messages generated are sent to their destinations

» Advantage: Sending messages means communication costs,
bundling them reduces costs

» Failure Management: Checkpointing entire computation by
making copy after each superstep

» May be beneficial to checkpoint periodically after number of
supersteps

UNIVERSITAT
BIELEFELD

SNAKEMAKE

» Create reproducible and scalable data analyses

» Workflows described in human readable, Python based
language

» Seamlessly scale to server, cluster, grid and cloud environments

» Integrating descriptions of required software, deployable to any
execution environment

UNIVERSITAT
BIELEFELD

The Communication-Cost Model

UNIVERSITAT
BIELEFELD

COMMUNICATION COST

Situation

» Algorithm implemented by acyclic network of tasks:

» Map tasks feeding Reduce tasks
» Cascade of several MapReduce jobs
» More general workflow structure (e.g. Fig. 1)

DEFINITION [COMMUNICATION COST]:

» The communication cost of a task is the size of the input it receives

» The communication cost of an algorithm is the sum of the
communication costs of its tasks

UNIVERSITAT
BIELEFELD

COMMUNICATION COST

Why Communication Cost?

» Computing communication cost is the way to measure the complexity
of distributed algorithm

» Neglect time necessary for tasks to execute

» Importance of communication cost:

>
>

»

>

Tasks tend to be simple (often linear in size of input)

Interconnect speed of compute cluster (typically 1 Gbit/sec) slow
compared with speed processors execute instructions

Often there is competition for the interconnect when several nodes are
communicating

Moving data from disk to memory may exceed runtime

Why not Output Size?

» Output often is input to another task anyway

» Output rarely large in comparison with input or intermediate data

UNIVERSITAT
BIELEFELD

REMINDER: NATURAL JOIN

Natural Join: R(A, B) 1 S(B, C)

» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b, c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)
» Construct all pairs of values where first component is like (R, a)
and second component is like (S, c), yielding triples

(b, (R,a), (S,¢))
» Turn triples into triples (4, b, c) being output

UNIVERSITAT
BIELEFELD

COMMUNICATION COST: NATURAL JOIN EXAMPLE

Suppose we are joining R(A, B) b S(B, C) with R, S of sizes r and s.

» Map: Chunks of files R, S are input to Map tasks

1= communication cost of Map is 7 + s (in practice mostly disk to
memory)

» Reduce: Input to Reduce tasks is all (» + s many) key-value pairs
generated by Map tasks
= communication cost for Reduce is O(r + s)

» Output of Reduce could be much larger than O(r + s) (up to

O(rs)), depending on how many tuples are to be generated for
each key b

UNIVERSITAT
BIELEFELD

COMMUNICATION COST EXAMPLE: R(A, B) 1 S(B, C)

Let sizes of relations R and S be r and s.
Map

» Each chunk of the files holding R and S is fed to one task
1 Communication costis ¥ + s

» Nodes hold chunks already from file distribution step: no
internode communication, only disk-to-memory costs

» All Map tasks perform a simple transformation, so only
negligible computation cost

» Output about as large as input

UNIVERSITAT
BIELEFELD

COMMUNICATION COST EXAMPLE: R(A, B) 1 S(B, C)

Let sizes of relations R and S be r and s.
Reduce
» Receives and divides input into tuples from R and S
» For each key, pairs each tuple from R with the ones from S

» Output size can vary: can be larger or smaller than O(r + s)

» Many different B-values: output is small
» Few B-values: output much larger

» Output large: computation cost could be much larger than
O(r+5s)

» Often output is further subsequently aggregated at further
nodes
i Communication cost greater than computation cost

UNIVERSITAT
BIELEFELD

WALL-CLOCK TIME

DEFINITION [WALL-CLOCK TIME]:

The wall-clock time is defined to be the time for the entire parallel
algorithm to finish.

Example: Careless reasoning could make one assign all tasks to one
node, which minimizes communication cost. But the wall-clock time
is (likely to be) at its maximum.

UNIVERSITAT
BIELEFELD

EXAMPLE: MULTIWAY JOIN

Consider computing R(A, B) > S(B, C) > T(C, D). For simplicity, let p
be the probability that both an R- and and S-tuple agree on B and that
an S- and a T-tuple agree on C

» Joining R and S first

» Communication cost is O(r + s) (see before)
» Size of output is prs
» Hence joining R 1 S with T'is O((r + s) + (t + prs))

» Joining S and T first analogously yields O((s + t) + (r + pst))

UNIVERSITAT
BIELEFELD

R(A,B) = S(B,C) < T(C,D) IN ONE MAPREDUCE

Let p be the probability that both an R- and an S-tuple agree on B and
that an S- and a T-tuple agree on C.

» Hash B- and C-values, using functions i and g
» Let b and c be the number of buckets for 1 and g

» Let k be the number of Reducers; require that bc = k

» Each reducer corresponds to a pair of buckets
» Reducer corresponding to bucket pair (i, j) joins tuples
R(u,v),S(v,w), T(w, x) whenever h(v) = i,g(w) =

» Hence Map tasks send R- and T-tuples to more than one reducer

» R-tuples R(u,v) go to all reducers (h(v),y)
1= goes to ¢ reducers

» T-tuples T(w, x) go to all reducers (z,g(w))
1 goes to b reducers

UNIVERSITAT
BIELEFELD

MULTIWAY JOIN: ONE MAPREDUCE II

«TO) =1
2O = h(SB)=2and g(S.C) =1
0o |1 3
0 -
1 -
h(B) =
r'e
2| T
h(RB)=2
Lo

Sixteen reducers for a 3-way join

Adopted from mmds . org

> (o) = 2,g(w) = 1
» S-tuple S(v, w) goes to reducer for key (2, 1)
» R-tuple R(u,v) goes to reducers for keys (2,0), ..., (2,3)

- univeitad -tuple T(w, x) goes to reducers for keys (1,0), ..., (1,3)
BIELEFELD

mmds.org

MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

» Moving tuples to proper reducers is sum of

» s to send tuples S(v, w) to (h(v),g(w))
» rc to send tuples R(u,v) to (h(v),y) for each of the ¢ possible

g(w) =y
» bt to send tuples T(w, x) to (z,g(w)) for each of the b possible
h(b) =z

» Additional (constant) cost r + s + t to make each tuple input to
one of the Map tasks (constant)

UNIVERSITAT
BIELEFELD

MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:
» Goal: Select b and ¢, subject to bc = k, to minimize s + cr + bt

» Using Lagrangian multiplier A yields to solve for

> r—Xb=0
> t— =0

> It follows that rt = A\?bc, that is rt = A%k, yielding further A = /%

» So, minimum communication cost at ¢ = \/k;t and b = 4/ %

» Substituting into s + cr + bt yields s + 2vkrt
» Adding r + s+t yields r 4+ 2s + ¢ + 2v'krt, which is usually
dominated by 2vkrt

UNIVERSITAT
BIELEFELD

MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 2.4-2.6

» For deepening your understanding, voluntary homework: please
read through 2.6.7

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Mining Data Streams”
» See Mining of Massive Datasets 4.1-4.7

UNIVERSITAT
BIELEFELD

http://www.mmds.org/

