Frequent Itemsets

Alexander Schönhuth

Bielefeld University July 2, 2020

LEARNING GOALS TODAY

- The Market-Basket Model
- ► Frequent Itemsets: Definition and Applications
- Association Rules
- ► The A-Priori Algorithm
 - ► Data Representation
 - ► Runtime and Space Considerations
 - Monotonicity
 - ► The Algorithm
- ► The Algorithm of Park, Chen and Yu (PCY)

Frequent Itemsets Introduction

FREQUENT ITEMSETS: OVERVIEW

Foundations

- ► There are *items* available in the market
- ► There are *baskets*, sets of items having been purchased together
- ► A *frequent itemset* is a set of items that is found to commonly appear in many baskets
- ► The *frequent-itemset problem* is to identify frequent itemsets

MARKET-BASKET MODEL

Market-basket model

- ► The market-basket model is a *many-many-relationship*
 - ► One basket holds many items
 - One item appears in several baskets
- ► Each basket is an itemset, i.e. a set of (one or several) items
- Usually, the number of items in a basket is small compared to number of items overall
- Number of baskets is usually large; too large to fit in main memory
- ► Data usually is a sequence of baskets

FREQUENT ITEMSETS: DEFINITION

DEFINITION [FREQUENT ITEMSET]:

- ▶ Let s > 0 be a *support threshold*
- ▶ Let I be a set of items
- ▶ supp(*I*), the *support* of *I*, is the number of baskets in which *I* appears as a subset

An itemset *I* is referred to as *frequent* if

$$\operatorname{supp}(I) \ge s \tag{1}$$

that is, if the support of *I* is at least the support threshold

FREQUENT ITEMSETS: EXAMPLE

Baskets

- 1. {cat, and, dog, bites}
- 2. {news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring}
- 3. {cat, killer, likely, is, a, big, dog}
- 4. {professional, free, advice, on, dog, training, puppy, training}
- 5. {cat, and, kitten, training, and, behavior}
- 6. {dog, cat, provides, training, in, Oregon}
- {dog, and, cat, is, a, slang, term, used, by, police, officers, for, a, male-female, relationship}
- 8. {shop, for, your, show, dog, grooming, and, pet, supplies}
- E.g. $supp({dog}) = 7$, $supp({and}) = 5$, $supp({dog, and}) = 4$
- ▶ Let the support threshold s = 3
- Exist 5 frequent singletons: {dog},{cat},{a},{and},{training}
- ► Exist 5 frequent doubletons: {dog, a},{dog, and},{dog, cat},{cat, a},{cat, and}
- ► Exists 1 frequent triple: {dog,cat,a}

FREQUENT ITEMSETS: APPLICATIONS

- Retailers / Supermarkets / Chain stores
 - ► Items: Products offered
 - Baskets: Sets of products purchased by one customer during one shopping run
 - ► Frequent Itemsets: Products purchased together unusually often
 Beer and diapers
- ► Related concepts
 - ► *Items*: Words, excluding stop words
 - ► Baskets: News articles, documents
 - ► Frequent Itemsets: Groups of words representing joint concept
- ► Plagiarism
 - ► Items: Documents
 - ▶ Baskets: Sentences
 - Frequent Itemsets: Documents containing unusually many sentences in common

ASSOCIATION RULES

- ► Let *j* be an item and *I* be an itemset
- ► An association rule

$$I \rightarrow j$$

expresses that if *I* is likely to appear in a basket, so is *j*

► In other words, if *I* shows in basket, one is confident to assume that *j* does, too

DEFINITION [CONFIDENCE]:

The *confidence* of a rule $I \rightarrow j$ is defined as

$$\frac{\operatorname{supp}(I \cup \{j\})}{\operatorname{supp}(I)} \tag{2}$$

that is the fraction of *I* containing baskets that also contain *j*.

ASSOCIATION RULES: CONFIDENCE

DEFINITION [CONFIDENCE]:

The *confidence* of a rule $I \rightarrow j$ is defined as

$$\frac{\operatorname{supp}(I \cup \{j\})}{\operatorname{supp}(I)}$$

that is the fraction of *I* containing baskets that also contain *j*.

Example from above

- ► Confidence of $\{cat, dog\} \rightarrow and \text{ is } 3/5$
- ► Confidence of $\{cat\}$ → *kitten* is 1/6

ASSOCIATION RULES: INTEREST

- ► Let *n* be the number of baskets overall
- ► Confidence for $I \rightarrow j$ can be meaningless if fraction of baskets containing j is large
- ► Confidence may just reflect that fraction
- ► So presence of *I* does not increase confidence to see *j* as well
- ► *Interest* is supposed to put this into context

DEFINITION [INTEREST]:

The *interest* of a rule $I \rightarrow j$ is defined as

$$\frac{\operatorname{supp}(I \cup \{j\})}{\operatorname{supp}(I)} - \frac{\operatorname{supp}(\{j\})}{n} \tag{3}$$

that is the confidence of $I \rightarrow j$ minus the fraction of baskets that contain j

ASSOCIATION RULES: INTEREST

DEFINITION [INTEREST]:

The *interest* of a rule $I \rightarrow j$ is defined as

$$\frac{\operatorname{supp}(I \cup \{j\})}{\operatorname{supp}(I)} - \frac{\operatorname{supp}(\{j\})}{n}$$

that is the confidence of $I \rightarrow j$ minus the fraction of baskets that contain j

Examples

- ▶ {*diapers*} → *beer* was found to have great interest
- ► $\{dog\} \to cat \text{ has interest } 5/7 3/4 = -0.036$
- $\{cat\} \rightarrow kitten \text{ has interest } 1/6 1/8 = 0.042$

FREQUENT ITEMSETS TO ASSOCIATION RULES

Situation

- Consider frequent itemsets of "reasonably high" support s
 - ► Note that each frequent itemset suggests to be acted upon

 sign keep their number reasonably low
 - ► Reasonably high often means about 1% of baskets
- ► Confidence for a rule $I \rightarrow j$ should be at least (about) 50% Support for $I \cup \{j\}$ also fairly high

Procedure

- ► Assume all I with supp(I) $\geq s$ have been mined
- ▶ For *J* of *n* items with supp(*J*) ≥ *s*, there are *n* possible association rules $J \setminus \{j\} \rightarrow J$
- ▶ $supp(J) \ge s implies supp(J \setminus \{j\}) \ge s$
- ▶ Confidence of $J \setminus \{j\} \rightarrow J$ is easily computed as

$$\frac{\operatorname{supp}(J)}{\operatorname{supp}(J\setminus\{j\})}$$

Mining Frequent Itemsets The A-Priori Algorithm

MARKET-BASKET DATA: REPRESENTATION

- Market-basket data is stored in a file basket-by-basket
 - ▶ If items refer to identifiers, for example $\{3, 36, 99\}\{6, 78, 11\}...$
- ► *Assumption:* Average size of basket is rather small
- Usually, file does not fit in main memory
- ► Generating all subsets of size *k* for a basket of size *n* requires

$$\binom{n}{k} \approx \frac{n^k}{k!}$$

runtime

- ► This often is little time because
 - ▶ *n* was assumed to be small
 - \blacktriangleright *k* is usually very small
 - ► When *k* is large, one can virtually reduce *n* further by removing infrequent items

MARKET-BASKET DATA: RUNTIME CONSIDERATION

Insight

- Runtime is dominated by transferring data from disk to main memory
- ► Consequence: Processing all baskets is proportional to size of file
- Runtime of algorithm is proportional to number of passes through file
- ► For a *fast frequent itemset mining* algorithm:

Limit number of passes through basket file

USE OF MAIN MEMORY

- ► *Issue*: One needs to store counts for itemsets of size *k*
 - ► There could be many such itemsets
 - ► How to store these counts?
- ► *Consequence:* There is a limit on the number of items an algorithm can deal with
- ► *Example*:
 - ▶ Let there be *n* items
 - ► For counting pairs, we need to store $\binom{n}{2} \approx n^2/2$ counts
 - ▶ Integers of 4 bytes: need $2n^2$ bytes to store counts
 - ► Consider machine of 2 GB, or $\approx 2^{31}$ bytes of main memory
 - ► Then $n < 2^{15} \approx 33\,000$ is required
- ► *Note:* Items can be hashed to integers, if they are not integers

STORING ITEMSET COUNTS: THE

Triangular-Matrix Method

- ► In the following, consider storing itemsets of size 2
 - ► Remember that support threshold is quite large in real applications
 - So, many more pairs than triples, quadruples and so on in real applications
- ► *Insight:* Storing counts a[i,j] in matrix $A = (a[i,j])_{1 \le i < j \le n} \in \mathbb{N}^{n \times n}$ wastes half of A
- ► *Solution*: Store count for pair of items $\{i, j\}, 1 \le i < j \le n$ in

$$a[k]$$
 where $k = (i-1)(n-\frac{i}{2}) + j - i$ (4)

This stores pairs in lexicographical order

$$\{1,2\},\{1,3\},...,\{1,n\},\{2,3\},...,\{2,n\},...,\{n-2,n\},\{n-1,n\}$$

STORING ITEMSET COUNTS: THE TRIPLES METHOD

- ▶ Store triples [i, j, c] for all pairs $\{i, j\}$ whose count c > 0
- ightharpoonup For example, do this with hash table, hashing i, j as search key
- ► *Advantage*: Does not require space for pairs $\{i, j\}$ of count zero
- ▶ *Disadavantage:* Requires three times the space if c > 0
- Rationale: Triangular matrix method better if at least 1/3 of the (ⁿ₂) pairs appear in basket

STORING ITEMSET COUNTS: EXAMPLE

Example

- ▶ Consider
 - ► 100 000 items
 - ► 10 000 000 baskets of
 - ▶ 10 items each
- ► Triangular-matrix method: $\binom{10^5}{2} \approx 5 \times 10^9$ integer counts
- ► Triples method: $10^7 \binom{10}{2} \approx 4.5 \times 10^8$ counts, making for $3 \times 4.5 \times 10^8 = 1.35 \times 10^9$ integers to be stored
- ► Triples method proves to be more appropriate

MONOTONICITY

THEOREM [MONOTONICITY]:

- ightharpoonup Let s be the support threshold.
- ▶ Let I, J be sets such that $J \subseteq I$

Then if *I* is frequent, any subset *J* of *I* is, too:

$$supp(I) \ge s$$
 implies $supp(J) \ge s$ (5)

PROOF.

Each basket that holds *I* also holds *J*, as *J* is contained in *I*. So, the number of baskets that hold *J* is at least as large as the number of baskets that hold *I*.

MAXIMAL FREQUENT ITEMSET

DEFINITION [MAXIMAL FREQUENT ITEMSET]:

- ightharpoonup Let s be the support threshold.
- ▶ Let *I* be frequent, that is supp(I) $\geq s$.

I is said to be *maximal* if no superset of *I* is frequent:

for all
$$J \supseteq I : \text{supp}(J) < s$$
 (6)

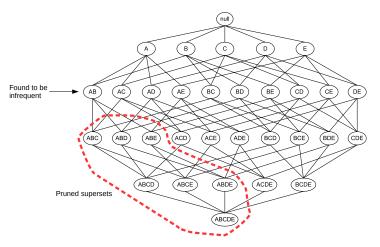
Example (from above):

- At support threshold s = 3, we found frequent pairs $\{dog, a\}, \{dog, and\}, \{dog, cat\}, \{cat, a\}, \{cat, and\}$
- ► {*dog*, *cat*, *a*} was found the only frequent triple
- $\{dog, cat, a\}, \{dog, and\} \text{ and } \{cat, and\} \text{ are maximal, while } \\ \text{universit\"{a}} \{dog, a\}, \{dog, cat\}, \{cat, a\} \text{ are not}$

NOTE ON COUNTING PAIRS

- ► The number of frequent pairs is larger than frequent triples, quadruples, ... why?
- ► For making sense, number of (maximal) frequent itemsets is supposed to be sufficiently small
 - ► Human applicants need to work it out on all of them
- ► So, support threshold is set sufficiently high
- Any maximal frequent itemset holds many more smaller, non-maximal frequent itemsets
- ► The resulting situation implies that there are many more frequent pairs than triples, many more frequent triples than quadruples, and so on
- ► Important:
 - Still, the possible number of triples, quadruples is (much) greater than pairs
 - ► Any good frequent itemset algorithm needs to avoid running through all possible triples, quadruples, and so on

MONOTONICITY TO THE RESCUE



 $\label{eq:continuous} Itemsets for items A,B,C,D,E \\ Neglecting supersets of infrequent pair \{A,B\}$

Adopted from mmds.org

A-Priori Algorithm: Motivation

In the following, we focus on determining frequent pairs.

Naive Approach

Consider the algorithm

- ► For each basket, use double loop to generate all pairs contained in it
- ► For each pair generated, add 1 to its count
- Store counts using triangular or triples method
- At the end, run through all pairs and determine those whose counts exceed support threshold s
- ► *Benefit:* Only one pass through all baskets
- ► Issue: Number of pairs considered usually does not fit in main memory

A-Priori Algorithm: Motivation

In the following, we focus on determining frequent pairs.

Naive Approach

- ► Possible Benefit: Only pass through all baskets
- Issue: Number of pairs considered usually does not fit in main memory

Solution: A-Priori-Algorithm

- Have two passes through baskets instead of one
- ► In first run, determine candidate pairs, for which counts are stored
- ► In second run, determine counts for candidate pairs
- ► Finally filter for frequent pairs

A-PRIORI ALGORITHM: FIRST PASS

Create and Maintain Two Tables

- ► *First table A*: Let *x* be an item name, then *A*[*x*] reflects that *x* is the *A*[*x*]-th item in the order of their appearance in the basket file
- ► *Second table B:* Let *k* be an item number, then *B*[*k*] is the number of baskets in which item number *k* appears

Read Baskets: Fill Table B

► For each basket, for each item *x* in the basket, set

$$B[A[x]] = B[A[x]] + 1 (7)$$

 That is, iteratively increase item counts while running through all items in all baskets

A-PRIORI ALGORITHM: SECOND PASS I

- ▶ Let *n* be the number of items
- ► Let *m* be the number of items found to be *frequent*
- ▶ By user constraints, usually m << n

Create Third Table

▶ *Third table C:* Let $1 \le k \le n$ be an item number. Then

$$C[k] = \begin{cases} 0 & \text{if item number } k \text{ is not frequent} \\ l & \text{if item number } k \text{ was found the } l\text{-th frequent item} \end{cases}$$
 (8)

So, $C \in \{0, 1, ..., m\}^n$, where

- ightharpoonup C[k] = 0 n m times
- $ightharpoonup C[k] = i, 1 \le i \le m$ exactly one time
- ▶ $0 < C[k_1] < C[k_2]$ implies $k_1 < k_2$, expressing that C preserves the order of appearance of items

A-Priori Algorithm: Second Pass II

Count Pairs Data Structure

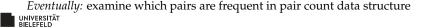
- ▶ Use either triangular or triples method data structure to hold counts
 - ► For using triangular method, renumbering necessary
- ▶ By monotonicity, a pair can only be frequent, if both items are frequent
- So, space required for is $O(m^2)$ rather than $O(n^2)$ where m << n implies $m^2 << n^2$, so fits in main memory!

Examine Baskets

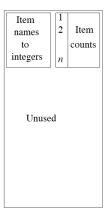
1. For each basket, for each item x, see whether

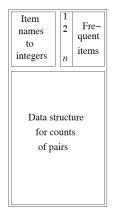
$$C[A[x]] > 0$$
 that is, whether x is frequent (9)

- 2. Using double loop, generate all pairs of frequent items in the basket
- 3. For each such pair, increase count by one in pair count data structure



A-PRIORI ALGORITHM: MAIN MEMORY USAGE





Pass 1

Pass 2

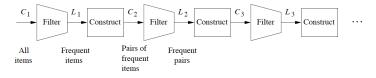
Use of main memory during A-Priori passes

Adopted from mmds.org

A-PRIORI ALGORITHM: ALL FREQUENT ITEMSETS

- ▶ *One extra pass* for each k > 2 to mine frequent itemsets of size k
- ► The A-Priori algorithm proceeds iteratively
 - ▶ Mining frequent itemsets of size k + 1 is based on knowing frequent itemsets of size k
- Each iteration consists of two steps for each *k*:
 - ightharpoonup Generate a candidate set C_k
 - ▶ Filter candidate set C_k to produce L_k, the truly frequent itemsets of size k
- ▶ The algorithm terminates at first k where L_k is empty
 - ► Monotonicity says we are done mining frequent itemsets

A-PRIORI ALGORITHM: CANDIDATE GENERATION AND FILTERING



A-Priori algorithm: Alternating between candidate generation and filtering

Adopted from mmds.org

- ► Construct: Let C_k be all itemsets of size k, every k-1 of which belong to L_{k-1}
- ► Filter: Make a pass through baskets to count members of C_k ; those with count exceeding s will be part of L_k
 - ► For storing counts for itemsets of size *k*, extend triples method
 - ► E.g. storing quadruples for frequent triples, and so on...

A-Priori Algorithm Extensions The PCY Algorithm

BOTTLENECK: SIZE OF C_2

- ▶ The predominant bottleneck in most applications of A-Priori is the size of C_2 , the candidate pairs
- ► Several algorithms address to trim down that size
- ► Exemplary algorithms:
 - ► The algorithm of Park, Chen and Yu (*PCY algorithm*)
 - ► The Multistage algorithm
 - ► The Multihash algorithm
- ► We will briefly treat the PCY algorithm here

THE PCY ALGORITHM

- Observation: Much of main memory during first pass of A-Priori remains unused
- ► Use that space for a hash table *H* that
 - ▶ hashes pairs of items $\{i, j\}$ to
 - ▶ buckets holding integers $H[\{i,j\}] \in \mathbb{N}$, where

```
H[\{i,j\}] is number of times any pair hashed to that bucket (10)
```

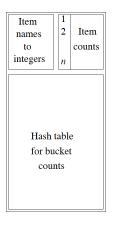
- ► To construct *H*, use double loop through baskets:
 - ▶ hash each resulting pair to bucket
 - increase the integer in that bucket by one
- lacktriangle A frequent bucket b exceeds the support threshold s

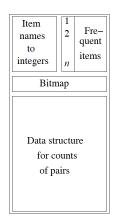
THE PCY ALGORITHM

- ► A *frequent bucket b* exceeds the support threshold *s*
- ► So, for any bucket *b*:
 - ▶ If *b* is infrequent, none of the pairs that hashed to *b* are frequent
 - ► If *b* is frequent, pairs hashing to it could be frequent
- ▶ *Definition of C*₂: For $\{i,j\} \in C_2$, both
 - ightharpoonup i and j must be frequent
 - $\{i, j\}$ must hash to a frequent bucket
- ▶ Use of C_2 in second pass:
 - ► Transform H into bitmap H'

$$H'[\{i,j\}] = \begin{cases} 1 & \text{if } H[\{i,j\}] \ge s \\ 0 & \text{if } H[\{i,j\}] < s \end{cases}$$
 (11)

PCY ALGORITHM: MAIN MEMORY USAGE





Pass 1 Pass 2

Use of main memory during A-Priori passes

 $Adopted \ from \ {\tt mmds.org}$

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, sections 6.1, 6.2, 6.3.1, 6.4.1, 6.4.2, 6.4.5
- ► As usual, see http://www.mmds.org/in general for further resources
- ► Next lecture: "Mining Data Streams II / PageRank I"
 - ► See *Mining of Massive Datasets* 9.1–9.5

