====== 392232 Advanced Artificial Intelligence in Biomedicine ====== \\ | [[https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=569566499 | 392232]] | Schönhuth/Schlüter | Winter 2025 | Thu 12-14 in Y-1-202 (S) and Thu 10-12 in U2-200 (Ü) | ==== Contact ==== * Prof. Dr. Alexander Schönhuth: [[mailto:aschoen@cebitec.uni-bielefeld.de|aschoen@cebitec.uni-bielefeld.de]] * Johannes Schlüter: [[mailto:j.schlueter@uni-bielefeld.de|j.schlueter@uni-bielefeld.de]] ==== Structure ==== * Individual presentations (S): present contents of chosen scientific paper for 30 minutes, followed by 15 minutes for discussion * Technical report (S): 10-12 pages long * Paper journal (Ü): collection of summaries of at least half of the presentations; each summary should be at least 300 words ==== Papers ==== Please, see on [[https://drive.google.com/file/d/1hB_u0jPfM6RtLs1QmwAWkLKeqd-XAzZw/view?usp=sharing | Google Drive]]. The file is password protected. \\ If there is any problem with accessing a paper, write an email to [[mailto:lpianesi@cebitec.uni-bielefeld.de|Luna Pianesi]]. ====Introduction==== {{teaching:2025winter:advanced_artificial_intelligence_in_biomedicine_introduction_default.mp4}} \\ \\ {{teaching:2025winter:introduction-161025.pdf}} ====How to present==== {{teaching:2025winter:howtopresent.mp4}} \\ \\ {{teaching:2025winter:howtopresent.pdf}} ====How to write reports==== {{teaching:2025winter:aaibm_howtowritereports.mp4}} \\ \\ {{teaching:2025winter:howtowritereports.pdf}} ==== Timetable seminar sessions ==== | **Date** | **Topic** | |16.10.2025 | Introduction, How to present | |23.10.2025 | - | |30.10.2025 | - | |06.11.2025 | - | |13.11.2025 | - | |20.11.2025 | How to write reports, Presentations start \\ **Presentation**: Gregor Foitzik. "Protein Structure Generation Via Folding Diffusion" | |27.11.2025 | **Presentation**: Sanket Veerkar. "Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures" \\ **Presentation**: Özay Öztürk. "Mamba: Linear-time Sequence Modelling with Selective State Spaces" | |04.12.2025 | **Presentation**: Karthikeya Barla. "Quantum Mixed-State Self-Attention Network" \\ **Presentation**: Christopher Gerz. "Protein Docking Model Evaluation by Graph Neural Networks" | |11.12.2025 | **Presentation**: Jonas Ginster. "Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition" \\ **Presentation**: Dustin Schulz. "Using GNN property predictors as molecule generators" | |18.12.2025 | **Presentation**: Dana Meyer. "Multiscale transformers and multi-attention mechanism networks for pathological nuclei segmentation" \\ **Presentation**: Felix Duldinger. "Context-aware geometric deep learning for protein sequence design" | |25.12.2025 | Holidays | |01.01.2026 | Holidays | |08.01.2026 | **Presentation**: Lokesh Mangamuri. "Combining Graph Attention and Recurrent Neural Networks in a Variational Autoencoder for Molecular Representation Learning and Drug Design" \\ **Presentation**: Genna Strathmann. "MEGANet: Multi-scale Edge-Guided Attention Network for Weak Boundary Polyp Segmentation" | |15.01.2026 | **Presentation**: Anjali Anjali. "Biomedical literature mining: graph kernel-based learning for gene–gene interaction extraction" \\ **Presentation**: Mathis Wülpern. "Hypergraph Factorization for Multi-tissue Gene Expression Imputation" | |22.01.2026 | **Presentation**: Abdulrahman Alzahabi. "DrugDAGT: a Dual-Attention Graph Transformer for Drug-Drug Interaction Prediction" \\ **Presentation**: Abu Emran Emon. "Graph-to-Sequence Retrosynthesis" | |29.01.2026| **Presentation**: Jefferson Vormann. "gRNAde: Geometric Deep Learning for 3D RNA Inverse Design" \\ **Presentation**: Michael Bucks. "Molecule Edit Graph Attention Network: Modelling Chemical Reactions as Sequences of Graph Edits" | |05.02.2026| **Presentation**: Aya Benzine. "Contextual AI Models for Single-cell Protein Biology" \\ **Presentation**: Ergys Kosita. "Prospective De Novo Drug Design with Deep Interactome Learning" | |12.02.2026| **Presentation**: Kareem Elbanna. "TAnet: A New Temporal Attention Network for EEG-based Auditory Spatial Attention Decoding with a Short Decision Window" \\ **Presentation**: Khaled Saber. "EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction" \\ **Presentation**: Shambavi Arcot Velumani. "On the Scalability of GNNs for Molecular Graphs" |